CONTRIBUTIONS OF 2'-HYDROXYL GROUPS OF THE RNA SUBSTRATE TO BINDING AND CATALYSIS BY THE TETRAHYMENA RIBOZYME - AN ENERGETIC PICTURE OF AN ACTIVE-SITE COMPOSED OF RNA

被引:121
|
作者
HERSCHLAG, D
ECKSTEIN, F
CECH, TR
机构
[1] UNIV COLORADO,DEPT CHEM & BIOCHEM,HOWARD HUGHES MED INST,BOULDER,CO 80309
[2] MAX PLANCK INST EXPTL MED,W-3400 GOTTINGEN,GERMANY
关键词
D O I
10.1021/bi00083a034
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The ribozyme derived from the intervening sequence of Tetrahymena thermophila pre-rRNA catalyzes a site-specific endonuclease reaction with both RNA and DNA oligonucleotides: CCCUCUAAAAA + G half arrow right over half arrow left CCCUCU + GAAAAA. However, the RNA substrate (rS) binds approximately 10(4)-fold stronger than the DNA substrate (dS) and once bound reacts approximately 10(4)-fold faster. Here we have investigated the role of individual 2'-hydroxyl groups by comparing the binding and reactivity of ''chimeric'' oligonucleotide substrates, in which the 2'-substituents of the individual sugar residues have been varied. Chimeric substrates containing a single ribonucleotide at positions -6 to +3 (numbered from the cleavage site) were cleaved faster than dS by factors of 3.5, 3.5, 2.3, 65, 18, 1700, 7.8, 1.7, and 1.4[(k(cat)/K(m))chimeric S/(k(cat)/K(m))dS]. The sum of the energetic contributions from the individual 2'-hydroxyl groups of 13.3 kcal/mol accounts for the 12.2 kcal/mol greater stabilization for RNA than for DNA in binding and cleavage (i.e., overall transition-state stabilization). This observation and the significant energetic effects from single ribose substitutions at positions -3 to +1 strongly suggest that local interactions, rather than overall helical differences, largely account for the different binding and reactivity of the DNA and RNA substrates. Each 2'-hydroxyl group was evaluated for its effect on each of three reaction steps leading to the chemical transition state: two binding steps (duplex formation and docking into tertiary interactions) and the chemical cleavage step. The 2'-hydroxyl groups at positions -3 and -2 stabilize docking, and this stabilization is maintained in the chemical step. This ''uniform binding'' indicates that these interactions contribute to catalysis by positioning the oligonucleotide substrate for reaction. The 2'-hydroxyl at position +1 has a small effect on the binding step and an additional small but significant effect on the chemical step. Thus, the ribozyme, like protein enzymes, can take advantage of interactions away from the site of chemistry to provide stabilization specifically in the transition state. The 2'-hydroxyl at position -1 exerts its large effect nearly exclusively on the chemical step [Herschlag, D., Eckstein, F., & Cech, T. R. (1993) Biochemistry (following paper in this issue)]. The energetic effects of other modifications of the 2'-substituents provide a crude picture of the active site. The 2'-OCH3 substituent at position -3 inhibits the reaction approximately 10-fold relative to 2'-H, suggesting that an unfavorable interaction cannot be avoided by an isoenergetic structural rearrangement. Furthermore, this binding pocket of the ribozyme has a high degree of specificity: 2'-F, -NH2, and -NH3+ are also ineffective substitutes for the 2'-OH moiety at position -3, even though these substituents lack the steric bulk of the O-methyl group. These effects suggest that this binding site composed of RNA has some rigidity and can discriminate between substrates at the level of single functional groups.
引用
收藏
页码:8299 / 8311
页数:13
相关论文
共 50 条