NON-ADIABATIC NON-ABELIAN GEOMETRIC PHASE

被引:275
作者
ANANDAN, J [1 ]
机构
[1] UNIV CALIF BERKELEY,DEPT PHYS,BERKELEY,CA 94720
关键词
D O I
10.1016/0375-9601(88)91010-9
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
引用
收藏
页码:171 / 175
页数:5
相关论文
共 16 条
[11]   EXISTENCE OF UNIVERSAL CONNECTIONS [J].
NARASIMHA, M ;
RAMANAN, S .
AMERICAN JOURNAL OF MATHEMATICS, 1961, 83 (03) :563-&
[12]   GEOMETRICAL DESCRIPTION OF BERRYS PHASE [J].
PAGE, DN .
PHYSICAL REVIEW A, 1987, 36 (07) :3479-3481
[13]   HOLONOMY, THE QUANTUM ADIABATIC THEOREM, AND BERRY PHASE [J].
SIMON, B .
PHYSICAL REVIEW LETTERS, 1983, 51 (24) :2167-2170
[14]   APPEARANCE OF GAUGE STRUCTURE IN SIMPLE DYNAMICAL-SYSTEMS [J].
WILCZEK, F ;
ZEE, A .
PHYSICAL REVIEW LETTERS, 1984, 52 (24) :2111-2114
[15]   NONLOCAL EFFECTS IN CLASSICAL AND QUANTUM THEORIES [J].
WISNIVESKY, D ;
AHARONOV, Y .
ANNALS OF PHYSICS, 1967, 45 (03) :479-+
[16]   SOME REMARKS ABOUT UNQUANTIZED NON-ABELIAN GUAGE FIELDS [J].
WU, TT ;
YANG, CN .
PHYSICAL REVIEW D, 1975, 12 (12) :3843-3844