Minimum risk equivariant estimator in linear regression model

被引:1
作者
Jureckova, Jana [1 ]
Picek, Jan [2 ]
机构
[1] Charles Univ Prague, Dept Probabil & Stat, Sokolovska 83, CZ-18675 Prague 8, Czech Republic
[2] Tech Univ Liberec, Dept Appl Math, CZ-46117 Liberec 1, Czech Republic
关键词
Asymptotic representation; Hajek-Hoeffding projection; Hoeffding-van Zwet decomposition; linear regression model; maximal invariant; minimum risk equivariant estimator; quadratic risk; score function; trimmed least squares estimator;
D O I
10.1524/stnd.2009.1018
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The minimum risk equivariant estimator (MRE) of the regression parameter vector beta in the linear regression model enjoys the finite-sample optimality property, but its calculation is difficult, with an exception of few special cases. We study some possible approximations of MRE, with distribution of the errors being known or unknown: A finite-sample approximation uses the Hajek-Hoeffding projection or the Hoeffding-van Zwet decomposition of an initial equivariant estimator of beta, a large-sample approximation is based on the asymptotic representation of the same. A nonparametric approximation uses the expected value with respect to the conditional empirical distribution function, developed by Stute (1986). The only possible approximation avoiding a difficult calculation of conditional expectations is the asymptotic approximation, based on the score function of the underlying distribution of the errors.
引用
收藏
页码:37 / 54
页数:18
相关论文
共 13 条
[1]   REGRESSION RANK SCORES AND REGRESSION QUANTILES [J].
GUTENBRUNNER, C ;
JURECKOVA, J .
ANNALS OF STATISTICS, 1992, 20 (01) :305-330
[2]   ASYMPTOTIC NORMALITY OF SIMPLE LINEAR RANK STATISTICS UNDER ALTERNATIVES [J].
HAJEK, J .
ANNALS OF MATHEMATICAL STATISTICS, 1968, 39 (02) :325-&
[3]  
Hoeffding W., 1961, U N CAROLINA MIMEOGR, V302
[4]   Characterization of distributions in invariant models [J].
Jurecková, J ;
Milhaud, X .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1999, 75 (02) :353-361
[5]  
Jureckova J., 2001, DATA ANAL STAT FDN F, P329
[6]  
Jurekova J., 1996, ROBUST STAT PROCEDUR
[7]  
Kagan A.M., 1973, CHARACTERIZATION PRO
[8]  
Kakosyan A. V., 1990, NONLINEAR STAT ESTIM
[9]   REGRESSION QUANTILES [J].
KOENKER, R ;
BASSETT, G .
ECONOMETRICA, 1978, 46 (01) :33-50
[10]   TRIMMED LEAST-SQUARES ESTIMATION IN THE LINEAR-MODEL [J].
RUPPERT, D ;
CARROLL, RJ .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1980, 75 (372) :828-838