AN INVARIANT VOLUME-MEAN-VALUE PROPERTY

被引:72
作者
AHERN, P [1 ]
FLORES, M [1 ]
RUDIN, W [1 ]
机构
[1] UNIV LA LAGUNA,E-38771 LA LAGUNA,SPAIN
关键词
D O I
10.1006/jfan.1993.1018
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
If f(hook) is harmonic and integrable over the open unit disc U then so is f(hook) (ring operator) ψ for every Moebius transformation ψ of U, and therefore 1 π ∫ U (f(hook) (ring operator) ψ) d A = f(hook)(ψ(0) for every ψ. Conversely, does this mean-value property imply that f(hook) is harmonic? A more general question, with the unit ball Bn of C (for arbitrary n≥ 1) in place of the disc, is investigated in the present paper. The answer is found to be affirmative if n ≤ 11, negative if n ≤ 12. © 1993 Academic Press Inc.
引用
收藏
页码:380 / 397
页数:18
相关论文
共 6 条
[1]  
[Anonymous], 1991, FUNCTIONAL ANAL
[2]  
AXLER S, INTEGR EQUAT OPER TH, V14, P1
[3]  
Berezin F. A., 1975, MATH USSR IZV, V9, P341, DOI DOI 10.1070/IM1975V009N02ABEH001480
[4]  
ENGLIS M, TOEPLITZ OPERATORS B
[5]   MOEBIUS-INVARIANT FUNCTION SPACES ON BALLS AND SPHERES [J].
NAGEL, A ;
RUDIN, W .
DUKE MATHEMATICAL JOURNAL, 1976, 43 (04) :841-865
[6]  
RUDIN W, 1980, FUNCTION THEORY UNIT