FOURIER MODE ANALYSIS OF THE MULTIGRID WAVE-FORM RELAXATION AND TIME-PARALLEL MULTIGRID METHODS

被引:31
|
作者
VANDEWALLE, S [1 ]
HORTON, G [1 ]
机构
[1] UNIV ERLANGEN NURNBERG,LEHRSTUHL RECHNERSTRUKT,IMMD 3,D-91058 ERLANGEN,GERMANY
关键词
PARABOLIC PARTIAL DIFFERENTIAL EQUATION; MULTIGRID; PARALLEL COMPUTING;
D O I
10.1007/BF02238230
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The advent of parallel computers has led to the development of new solution algorithms for time-dependent partial differential equations. Two recently developed methods, multigrid waveform relaxation and time-parallel multigrid, have been designed to solve parabolic partial differential equations on many time-levels simultaneously. This paper compares the convergence properties of these methods, based on the results of an exponential Fourier mode analysis for a model problem.
引用
收藏
页码:317 / 330
页数:14
相关论文
共 50 条
  • [1] ON THE MULTIGRID WAVE-FORM RELAXATION METHOD
    TAASAN, S
    ZHANG, H
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1995, 16 (05): : 1092 - 1104
  • [2] NUMERICAL EXPERIMENTS WITH NONLINEAR MULTIGRID WAVE-FORM RELAXATION ON A PARALLEL PROCESSOR
    VANDEWALLE, S
    PIESSENS, R
    APPLIED NUMERICAL MATHEMATICS, 1991, 8 (02) : 149 - 161
  • [3] THE TIME-PARALLEL MULTIGRID METHOD
    HORTON, G
    COMMUNICATIONS IN APPLIED NUMERICAL METHODS, 1992, 8 (09): : 585 - 595
  • [4] A COMPARISON OF THE CRANK-NICOLSON AND WAVE-FORM RELAXATION MULTIGRID METHODS ON THE INTEL HYPERCUBE
    VANDEWALLE, S
    PIESSENS, R
    PROCEEDINGS OF THE FOURTH COPPER MOUNTAIN CONFERENCE ON MULTIGRID METHODS, 1989, : 417 - 434
  • [5] LOCAL FOURIER ANALYSIS OF SPACE-TIME RELAXATION AND MULTIGRID SCHEMES
    Friedhoff, S.
    MacLachlan, S.
    Boergers, C.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2013, 35 (05): : S250 - S276
  • [6] COMPACT FOURIER ANALYSIS FOR DESIGNING MULTIGRID METHODS
    Huckle, Thomas K.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2008, 31 (01): : 644 - 666
  • [7] FOURIER ANALYSIS FOR MULTIGRID METHODS ON TRIANGULAR GRIDS
    Gaspar, F. J.
    Gracia, J. L.
    Lisbona, F. J.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2009, 31 (03): : 2081 - 2102
  • [8] FOURIER ANALYSIS OF PERIODIC STENCILS IN MULTIGRID METHODS
    Bolten, M.
    Rittich, H.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2018, 40 (03): : A1642 - A1668
  • [9] FOURIER ANALYSIS OF MULTIGRID METHODS ON HEXAGONAL GRIDS
    Zhou, Guohua
    Fulton, Scott R.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2009, 31 (02): : 1518 - 1538
  • [10] Fourier mode analysis of multigrid methods for partial differential equations with random coefficients
    Seynaeve, Bert
    Rosseel, Eveline
    Nicolai, Bart
    Vandewalle, Stefan
    JOURNAL OF COMPUTATIONAL PHYSICS, 2007, 224 (01) : 132 - 149