THE EXISTENCE OF MOMENTS FOR STATIONARY MARKOV-CHAINS

被引:89
作者
TWEEDIE, RL
机构
关键词
D O I
10.2307/3213735
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Conditions are given under which the stationary distribution pi of a Markov chain admits moments of the general form integral f(x) pi (dx), where f is a general function; specific examples include f(x) equals x**r and f(x) equals e**s**x. In general the time-dependent moments of the chain then converge to the stationary moments. It is shown that in special cases this convergence of moments occurs at a geometric rate. The results are applied to random walk on left bracket 0, infinity ).
引用
收藏
页码:191 / 196
页数:6
相关论文
共 6 条
[1]   SPLITTING TECHNIQUE FOR HARRIS RECURRENT MARKOV-CHAINS [J].
NUMMELIN, E .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1978, 43 (04) :309-318
[2]   GEOMETRIC ERGODICITY AND R-POSITIVITY FOR GENERAL MARKOV-CHAINS [J].
NUMMELIN, E ;
TWEEDIE, RL .
ANNALS OF PROBABILITY, 1978, 6 (03) :404-420
[3]  
NUMMELIN E, 1982, STOCHASTIC PROCESS A, V0012, P00187
[4]   R-THEORY FOR MARKOV-CHAINS ON A TOPOLOGICAL STATE SPACE .2. [J].
POLLARD, DB ;
TWEEDIE, RL .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1976, 34 (04) :269-278
[5]   CRITERIA FOR CLASSIFYING GENERAL MARKOV-CHAINS [J].
TWEEDIE, RL .
ADVANCES IN APPLIED PROBABILITY, 1976, 8 (04) :737-771
[6]  
TWEEDIE RL, 1982, PAPERS PROBABILITY S