ROBUST NONHYPERBOLIC DYNAMICS AND HETERODIMENSIONAL CYCLES

被引:63
作者
DIAZ, LJ [1 ]
机构
[1] PONTIFICIA UNIV CATOLICA RIO DE JANEIRO,DEPT MATEMAT,BR-22453 RIO JANEIRO,BRAZIL
关键词
D O I
10.1017/S0143385700008385
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We describe an open set A of arcs of diffeomorphisms bifurcating through the creation of heterodimensional cycles for which every diffeomorphism after the bifurcation is nonhyperbolic or unstable. We also prove that generically in A the borning nonwandering set is transitive and local maximal for a full (Lebesgue) set of parameter values.
引用
收藏
页码:291 / 315
页数:25
相关论文
共 21 条
  • [1] THE DYNAMICS OF THE HENON MAP
    BENEDICKS, M
    CARLESON, L
    [J]. ANNALS OF MATHEMATICS, 1991, 133 (01) : 73 - 169
  • [2] NONCONNECTED HETERODIMENSIONAL CYCLES - BIFURCATION AND STABILITY
    DIAZ, LJ
    ROCHA, J
    [J]. NONLINEARITY, 1992, 5 (06) : 1315 - 1341
  • [3] DIAZ LJ, 1990, THESIS IMPA RIO DE J
  • [4] HIRSCH M, 1970, GLOBAL ANAL, V14
  • [5] ABUNDANCE OF STRANGE ATTRACTORS
    MORA, L
    VIANA, M
    [J]. ACTA MATHEMATICA, 1993, 171 (01) : 1 - 71
  • [6] NEWHOUSE S, 1973, DYNAMICAL SYSTEMS
  • [7] NEWHOUSE S, 1970, GLOBAL ANAL, V14
  • [8] NEWHOUSE S, 1978, ASTERISQUE, V31, P44
  • [9] NEWHOUSE S, 1974, TOPOLOGY, V13, P9
  • [10] Newhouse S.E., 1979, PUBL MATH I HAUTES T, V50, P101, DOI [DOI 10.1007/BF02684771, 10.1007/BF02684771]