Computational Analyses of Spectral Trees from Electrospray Multi-Stage Mass Spectrometry to Aid Metabolite Identification

被引:13
作者
Cao, Mingshu [1 ]
Fraser, Karl [1 ]
Rasmussen, Susanne [1 ]
机构
[1] AgRes Grasslands Res Ctr, Palmerston North 4442, New Zealand
来源
METABOLITES | 2013年 / 3卷 / 04期
关键词
ESI fragmentation; peak annotation; metabolite identification; Lolium perenne;
D O I
10.3390/metabo3041036
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Mass spectrometry coupled with chromatography has become the major technical platform in metabolomics. Aided by peak detection algorithms, the detected signals are characterized by mass-over-charge ratio (m/z) and retention time. Chemical identities often remain elusive for the majority of the signals. Multi-stage mass spectrometry based on electrospray ionization (ESI) allows collision-induced dissociation (CID) fragmentation of selected precursor ions. These fragment ions can assist in structural inference for metabolites of low molecular weight. Computational investigations of fragmentation spectra have increasingly received attention in metabolomics and various public databases house such data. We have developed an R package "iontree" that can capture, store and analyze MS2 and MS3 mass spectral data from high throughput metabolomics experiments. The package includes functions for ion tree construction, an algorithm (distMS2) for MS2 spectral comparison, and tools for building platform-independent ion tree (MS2/MS3) libraries. We have demonstrated the utilization of the package for the systematic analysis and annotation of fragmentation spectra collected in various metabolomics platforms, including direct infusion mass spectrometry, and liquid chromatography coupled with either low resolution or high resolution mass spectrometry. Assisted by the developed computational tools, we have demonstrated that spectral trees can provide informative evidence complementary to retention time and accurate mass to aid with annotating unknown peaks. These experimental spectral trees once subjected to a quality control process, can be used for querying public MS2 databases or de novo interpretation. The putatively annotated spectral trees can be readily incorporated into reference libraries for routine identification of metabolites.
引用
收藏
页码:1036 / 1050
页数:15
相关论文
共 38 条
  • [1] High-throughput, nontargeted metabolite fingerprinting using nominal mass flow injection electrospray mass spectrometry
    Beckmann, Manfred
    Parker, David
    Enot, David P.
    Duval, Emilie
    Draper, John
    [J]. NATURE PROTOCOLS, 2008, 3 (03) : 486 - 504
  • [2] A suite of algorithms for the comprehensive analysis of complex protein mixtures using high-resolution LC-MS
    Bellew, Matthew
    Coram, Marc
    Fitzgibbon, Matthew
    Igra, Mark
    Randolph, Tim
    Wang, Pei
    May, Damon
    Eng, Jimmy
    Fang, Ruihua
    Lin, ChenWei
    Chen, Jinzhi
    Goodlett, David
    Whiteaker, Jeffrey
    Paulovich, Amanda
    McIntosh, Martin
    [J]. BIOINFORMATICS, 2006, 22 (15) : 1902 - 1909
  • [3] XCMS2:: Processing tandem mass spectrometry data for metabolite identification and structural characterization
    Benton, H. P.
    Wong, D. M.
    Trauger, S. A.
    Siuzdak, G.
    [J]. ANALYTICAL CHEMISTRY, 2008, 80 (16) : 6382 - 6389
  • [4] Advanced data-mining strategies for the analysis of direct-infusion ion trap mass spectrometry data from the association of perennial ryegrass with its endophytic fungus, Neotyphodium lolii
    Cao, Mingshu
    Koulman, Albert
    Johnson, Linda J.
    Lane, Geoffrey A.
    Rasmussen, Susanne
    [J]. PLANT PHYSIOLOGY, 2008, 146 (04) : 1501 - 1514
  • [5] A cross-platform toolkit for mass spectrometry and proteomics
    Chambers, Matthew C.
    Maclean, Brendan
    Burke, Robert
    Amodei, Dario
    Ruderman, Daniel L.
    Neumann, Steffen
    Gatto, Laurent
    Fischer, Bernd
    Pratt, Brian
    Egertson, Jarrett
    Hoff, Katherine
    Kessner, Darren
    Tasman, Natalie
    Shulman, Nicholas
    Frewen, Barbara
    Baker, Tahmina A.
    Brusniak, Mi-Youn
    Paulse, Christopher
    Creasy, David
    Flashner, Lisa
    Kani, Kian
    Moulding, Chris
    Seymour, Sean L.
    Nuwaysir, Lydia M.
    Lefebvre, Brent
    Kuhlmann, Frank
    Roark, Joe
    Rainer, Paape
    Detlev, Suckau
    Hemenway, Tina
    Huhmer, Andreas
    Langridge, James
    Connolly, Brian
    Chadick, Trey
    Holly, Krisztina
    Eckels, Josh
    Deutsch, Eric W.
    Moritz, Robert L.
    Katz, Jonathan E.
    Agus, David B.
    MacCoss, Michael
    Tabb, David L.
    Mallick, Parag
    [J]. NATURE BIOTECHNOLOGY, 2012, 30 (10) : 918 - 920
  • [6] Trans-Proteomic Pipeline supports and improves analysis of electron transfer dissociation data sets
    Deutsch, Eric W.
    Shteynberg, David
    Lam, Henry
    Sun, Zhi
    Eng, Jimmy K.
    Carapito, Christine
    von Haller, Priska D.
    Tasman, Natalie
    Mendoza, Luis
    Farrah, Terry
    Aebersold, Ruedi
    [J]. PROTEOMICS, 2010, 10 (06) : 1190 - 1195
  • [7] Metabolite signal identification in accurate mass metabolomics data with MZedDB, an interactive m/z annotation tool utilising predicted ionisation behaviour 'rules'
    Draper, John
    Enot, David P.
    Parker, David
    Beckmann, Manfred
    Snowdon, Stuart
    Lin, Wanchang
    Zubair, Hassan
    [J]. BMC BIOINFORMATICS, 2009, 10
  • [8] Improved peak detection in mass spectrum by incorporating continuous wavelet transform-based pattern matching
    Du, Pan
    Kibbe, Warren A.
    Lin, Simon M.
    [J]. BIOINFORMATICS, 2006, 22 (17) : 2059 - 2065
  • [9] Mass appeal: metabolite identification in mass spectrometry-focused untargeted metabolomics
    Dunn, Warwick B.
    Erban, Alexander
    Weber, Ralf J. M.
    Creek, Darren J.
    Brown, Marie
    Breitling, Rainer
    Hankemeier, Thomas
    Goodacre, Royston
    Neumann, Steffen
    Kopka, Joachim
    Viant, Mark R.
    [J]. METABOLOMICS, 2013, 9 (01) : S44 - S66
  • [10] MSnbase-an R/Bioconductor package for isobaric tagged mass spectrometry data visualization, processing and quantitation
    Gatto, Laurent
    Lilley, Kathryn S.
    [J]. BIOINFORMATICS, 2012, 28 (02) : 288 - 289