Computational Analyses of Spectral Trees from Electrospray Multi-Stage Mass Spectrometry to Aid Metabolite Identification

被引:13
作者
Cao, Mingshu [1 ]
Fraser, Karl [1 ]
Rasmussen, Susanne [1 ]
机构
[1] AgRes Grasslands Res Ctr, Palmerston North 4442, New Zealand
关键词
ESI fragmentation; peak annotation; metabolite identification; Lolium perenne;
D O I
10.3390/metabo3041036
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Mass spectrometry coupled with chromatography has become the major technical platform in metabolomics. Aided by peak detection algorithms, the detected signals are characterized by mass-over-charge ratio (m/z) and retention time. Chemical identities often remain elusive for the majority of the signals. Multi-stage mass spectrometry based on electrospray ionization (ESI) allows collision-induced dissociation (CID) fragmentation of selected precursor ions. These fragment ions can assist in structural inference for metabolites of low molecular weight. Computational investigations of fragmentation spectra have increasingly received attention in metabolomics and various public databases house such data. We have developed an R package "iontree" that can capture, store and analyze MS2 and MS3 mass spectral data from high throughput metabolomics experiments. The package includes functions for ion tree construction, an algorithm (distMS2) for MS2 spectral comparison, and tools for building platform-independent ion tree (MS2/MS3) libraries. We have demonstrated the utilization of the package for the systematic analysis and annotation of fragmentation spectra collected in various metabolomics platforms, including direct infusion mass spectrometry, and liquid chromatography coupled with either low resolution or high resolution mass spectrometry. Assisted by the developed computational tools, we have demonstrated that spectral trees can provide informative evidence complementary to retention time and accurate mass to aid with annotating unknown peaks. These experimental spectral trees once subjected to a quality control process, can be used for querying public MS2 databases or de novo interpretation. The putatively annotated spectral trees can be readily incorporated into reference libraries for routine identification of metabolites.
引用
收藏
页码:1036 / 1050
页数:15
相关论文
共 38 条
[1]   High-throughput, nontargeted metabolite fingerprinting using nominal mass flow injection electrospray mass spectrometry [J].
Beckmann, Manfred ;
Parker, David ;
Enot, David P. ;
Duval, Emilie ;
Draper, John .
NATURE PROTOCOLS, 2008, 3 (03) :486-504
[2]   A suite of algorithms for the comprehensive analysis of complex protein mixtures using high-resolution LC-MS [J].
Bellew, Matthew ;
Coram, Marc ;
Fitzgibbon, Matthew ;
Igra, Mark ;
Randolph, Tim ;
Wang, Pei ;
May, Damon ;
Eng, Jimmy ;
Fang, Ruihua ;
Lin, ChenWei ;
Chen, Jinzhi ;
Goodlett, David ;
Whiteaker, Jeffrey ;
Paulovich, Amanda ;
McIntosh, Martin .
BIOINFORMATICS, 2006, 22 (15) :1902-1909
[3]   XCMS2:: Processing tandem mass spectrometry data for metabolite identification and structural characterization [J].
Benton, H. P. ;
Wong, D. M. ;
Trauger, S. A. ;
Siuzdak, G. .
ANALYTICAL CHEMISTRY, 2008, 80 (16) :6382-6389
[4]   Advanced data-mining strategies for the analysis of direct-infusion ion trap mass spectrometry data from the association of perennial ryegrass with its endophytic fungus, Neotyphodium lolii [J].
Cao, Mingshu ;
Koulman, Albert ;
Johnson, Linda J. ;
Lane, Geoffrey A. ;
Rasmussen, Susanne .
PLANT PHYSIOLOGY, 2008, 146 (04) :1501-1514
[5]   A cross-platform toolkit for mass spectrometry and proteomics [J].
Chambers, Matthew C. ;
Maclean, Brendan ;
Burke, Robert ;
Amodei, Dario ;
Ruderman, Daniel L. ;
Neumann, Steffen ;
Gatto, Laurent ;
Fischer, Bernd ;
Pratt, Brian ;
Egertson, Jarrett ;
Hoff, Katherine ;
Kessner, Darren ;
Tasman, Natalie ;
Shulman, Nicholas ;
Frewen, Barbara ;
Baker, Tahmina A. ;
Brusniak, Mi-Youn ;
Paulse, Christopher ;
Creasy, David ;
Flashner, Lisa ;
Kani, Kian ;
Moulding, Chris ;
Seymour, Sean L. ;
Nuwaysir, Lydia M. ;
Lefebvre, Brent ;
Kuhlmann, Frank ;
Roark, Joe ;
Rainer, Paape ;
Detlev, Suckau ;
Hemenway, Tina ;
Huhmer, Andreas ;
Langridge, James ;
Connolly, Brian ;
Chadick, Trey ;
Holly, Krisztina ;
Eckels, Josh ;
Deutsch, Eric W. ;
Moritz, Robert L. ;
Katz, Jonathan E. ;
Agus, David B. ;
MacCoss, Michael ;
Tabb, David L. ;
Mallick, Parag .
NATURE BIOTECHNOLOGY, 2012, 30 (10) :918-920
[6]   Trans-Proteomic Pipeline supports and improves analysis of electron transfer dissociation data sets [J].
Deutsch, Eric W. ;
Shteynberg, David ;
Lam, Henry ;
Sun, Zhi ;
Eng, Jimmy K. ;
Carapito, Christine ;
von Haller, Priska D. ;
Tasman, Natalie ;
Mendoza, Luis ;
Farrah, Terry ;
Aebersold, Ruedi .
PROTEOMICS, 2010, 10 (06) :1190-1195
[7]   Metabolite signal identification in accurate mass metabolomics data with MZedDB, an interactive m/z annotation tool utilising predicted ionisation behaviour 'rules' [J].
Draper, John ;
Enot, David P. ;
Parker, David ;
Beckmann, Manfred ;
Snowdon, Stuart ;
Lin, Wanchang ;
Zubair, Hassan .
BMC BIOINFORMATICS, 2009, 10
[8]   Improved peak detection in mass spectrum by incorporating continuous wavelet transform-based pattern matching [J].
Du, Pan ;
Kibbe, Warren A. ;
Lin, Simon M. .
BIOINFORMATICS, 2006, 22 (17) :2059-2065
[9]   Mass appeal: metabolite identification in mass spectrometry-focused untargeted metabolomics [J].
Dunn, Warwick B. ;
Erban, Alexander ;
Weber, Ralf J. M. ;
Creek, Darren J. ;
Brown, Marie ;
Breitling, Rainer ;
Hankemeier, Thomas ;
Goodacre, Royston ;
Neumann, Steffen ;
Kopka, Joachim ;
Viant, Mark R. .
METABOLOMICS, 2013, 9 (01) :S44-S66
[10]   MSnbase-an R/Bioconductor package for isobaric tagged mass spectrometry data visualization, processing and quantitation [J].
Gatto, Laurent ;
Lilley, Kathryn S. .
BIOINFORMATICS, 2012, 28 (02) :288-289