FORMULATION OF MANY-BODY PROBLEM FOR COMPOSITE PARTICLES

被引:85
|
作者
GIRARDEAU, M
机构
关键词
D O I
10.1063/1.1704039
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
引用
收藏
页码:1096 / &
相关论文
共 50 条
  • [41] THE MANY-BODY PROBLEM AND THE BRUECKNER APPROXIMATION
    RODBERG, LS
    ANNALS OF PHYSICS, 1957, 2 (03) : 199 - 225
  • [42] THE RELATIVISTIC ATOMIC MANY-BODY PROBLEM
    BROWN, GE
    PHYSICA SCRIPTA, 1987, 36 (01): : 71 - 76
  • [43] SOLUTION OF THE NUCLEAR MANY-BODY PROBLEM
    BRUECKNER, KA
    GAMMEL, JL
    PHYSICAL REVIEW, 1957, 105 (05): : 1679 - 1681
  • [44] VARIATIONAL APPROACH TO MANY-BODY PROBLEM
    DAPROVIDENCIA, JD
    NUCLEAR PHYSICS, 1965, 61 (01): : 87 - +
  • [45] Periods of the goldfish many-body problem
    Gomez-Ullate, D
    Sommacal, M
    JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2005, 12 : 351 - 362
  • [46] Quantum dots and the many-body problem
    Weidenmüller, HA
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2001, 15 (10-11): : 1389 - 1403
  • [47] A NEW METHOD IN THE MANY-BODY PROBLEM
    KRASOVKSY, IV
    PERESADA, VI
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1995, 28 (06): : 1493 - 1505
  • [48] PERTURBATION TREATMENT OF THE MANY-BODY PROBLEM
    SWIATECKI, WJ
    PHYSICAL REVIEW, 1956, 101 (04): : 1321 - 1325
  • [49] Hill stability in the many-body problem
    Luk'yanov, LG
    Nasonova, LP
    Shirmin, GI
    ASTRONOMY LETTERS-A JOURNAL OF ASTRONOMY AND SPACE ASTROPHYSICS, 2003, 29 (04): : 274 - 277
  • [50] On the Quadratization of the Integrals for the Many-Body Problem
    Ying, Yu
    Baddour, Ali
    Gerdt, Vladimir P.
    Malykh, Mikhail
    Sevastianov, Leonid
    MATHEMATICS, 2021, 9 (24)