GENERALIZATION OF K-NN RULE

被引:51
|
作者
TOMEK, I [1 ]
机构
[1] ACADIA UNIV,DEPT COMP SCI,WOLFVILLE,NOVA SCOTIA,CANADA
来源
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS | 1976年 / 6卷 / 02期
关键词
D O I
10.1109/TSMC.1976.5409182
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
引用
收藏
页码:121 / 126
页数:6
相关论文
共 50 条
  • [1] A learning scheme for a fuzzy k-NN rule
    Jozwik, Adam
    PATTERN RECOGNITION LETTERS, 1983, 1 (5-6) : 287 - 289
  • [2] NOTE ON TIES IN VOTING WITH K-NN RULE
    DEVIJVER, PA
    PATTERN RECOGNITION, 1978, 10 (04) : 297 - 298
  • [3] Does linear combination outperform the k-NN rule?
    Liu, Ming
    Yuan, Baozong
    Chen, Jiangfeng
    Miao, Zhenjiang
    2006 8TH INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING, VOLS 1-4, 2006, : 1742 - +
  • [4] An evidence-theoretic k-NN rule with parameter optimization
    Zouhal, LM
    Denoeux, T
    IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART C-APPLICATIONS AND REVIEWS, 1998, 28 (02): : 263 - 271
  • [5] EXPONENTIAL POSTERIOR ERROR BOUND FOR THE k-NN DISCRIMINATION RULE
    陈希孺
    ScienceinChina,SerA., 1985, Ser.A.1985 (07) : 673 - 682
  • [6] EXPONENTIAL POSTERIOR ERROR BOUND FOR THE K-NN DISCRIMINATION RULE
    CHEN, XR
    SCIENTIA SINICA SERIES A-MATHEMATICAL PHYSICAL ASTRONOMICAL & TECHNICAL SCIENCES, 1985, 28 (07): : 673 - 682
  • [7] EXPONENTIAL POSTERIOR ERROR BOUND FOR THE k-NN DISCRIMINATION RULE
    陈希孺
    Science China Mathematics, 1985, (07) : 673 - 682
  • [8] Universal consistency of the k-NN rule in metric spaces and Nagata dimension***
    Collins, Benoit
    Kumari, Sushma
    Pestov, Vladimir G.
    ESAIM-PROBABILITY AND STATISTICS, 2020, 24 : 914 - 934
  • [9] On k-NN method with preprocessing
    University of Information Technology and Management, H. Sucharskiego 2, 35-225 Rzeszow, Poland
    不详
    Fundam Inf, 2006, 3 (343-358):
  • [10] On the Merge of k-NN Graph
    Zhao, Wan-Lei
    Wang, Hui
    Lin, Peng-Cheng
    Ngo, Chong-Wah
    IEEE TRANSACTIONS ON BIG DATA, 2022, 8 (06) : 1496 - 1510