SCHUR STABILITY OF INTERVAL POLYNOMIALS

被引:2
作者
FOO, YK [1 ]
SOH, YC [1 ]
机构
[1] NANYANG TECHNOL UNIV,SCH ELECT & ELECTR ENGN,SINGAPORE 2263,SINGAPORE
关键词
D O I
10.1109/9.222307
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this note, we shall present a result for checking the Schur stability of interval polynomials. In particular, we are interested in the number of critical vertex and edge polynomials that are sufficient for inferring robust Schur stability.
引用
收藏
页码:943 / 946
页数:4
相关论文
共 10 条
[1]   ROBUST SCHUR STABILITY OF A POLYTOPE OF POLYNOMIALS [J].
ACKERMANN, JE ;
BARMISH, BR .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1988, 33 (10) :984-986
[2]  
Bartlett AC., 1988, MATH CONTROL SIGNAL, V1, P61, DOI DOI 10.1007/BF02551236
[4]  
DJAFERIS TE, 1988, P AM CONTR C
[5]   ROOT CLUSTERING OF INTERVAL POLYNOMIALS IN THE LEFT-SECTOR [J].
FOO, YK ;
SOH, YC .
SYSTEMS & CONTROL LETTERS, 1989, 13 (03) :239-245
[6]  
FOO YK, 1990, IEEE T AUTOMAT CONTR, V35, P1378
[7]   STABILIZING UNCERTAIN SYSTEMS - RECOVERING FULL STATE FEEDBACK PERFORMANCE VIA AN OBSERVER [J].
HOLLOT, CV ;
GALIMIDI, AR .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1986, 31 (11) :1050-1053
[8]  
Kharitonov V. L., 1979, FF EQ, V14, P1483
[9]  
KRAUS F, IN PRESS ROBUST SCHU
[10]   ON THE ROBUSTNESS OF LOW-ORDER SCHUR POLYNOMIALS [J].
KRAUS, FJ ;
ANDERSON, BDO ;
JURY, EI ;
MANSOUR, M .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, 1988, 35 (05) :570-577