A HIGHER-ORDER TRIANGULAR PLATE BENDING ELEMENT REVISITED

被引:41
|
作者
DASGUPTA, S
SENGUPTA, D
机构
[1] Bengal Engineering College, Howard, West Bengal
关键词
D O I
10.1002/nme.1620300303
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A new formulation of an eighteen‐degrees‐of‐freedom higher‐order triangular plate bending element using triangular area co‐ordinates is presented. The displacement function w is taken as the complete fifth‐order polynomial in area co‐ordinates. The normal slope along an edge of the triangle is constrained to vary cubically. The twenty‐one constants are expressed explicity in terms of eighteen degrees of freedom. The element stiffness matrix is expressed as a product of component matrices for which explicit expressions are developed and presented. No numerical inversion or integration is necessary. The formulation is expected to be useful specially for microcomputers. Copyright © 1990 John Wiley & Sons, Ltd
引用
收藏
页码:419 / 430
页数:12
相关论文
共 50 条
  • [1] A new higher-order triangular plate bending element for the analysis of laminated composite and sandwich plates
    Rezaiee-Pajand, M.
    Shahabian, F.
    Tavakoli, F. H.
    STRUCTURAL ENGINEERING AND MECHANICS, 2012, 43 (02) : 253 - 271
  • [2] Higher-order hybrid stress triangular Mindlin plate element
    Li, Tan
    Ma, Xu
    Jing Xili
    Chen, Wanji
    COMPUTATIONAL MECHANICS, 2016, 58 (06) : 911 - 928
  • [3] Higher-order hybrid stress triangular Mindlin plate element
    Tan Li
    Xu Ma
    Jing Xili
    Wanji Chen
    Computational Mechanics, 2016, 58 : 911 - 928
  • [4] Computation of stress resultants in plate bending problems using higher-order triangular elements
    Ramesh, Sai Sudha
    Wang, C. M.
    Reddy, J. N.
    Ang, K. K.
    ENGINEERING STRUCTURES, 2008, 30 (10) : 2687 - 2706
  • [5] Higher-order assumed stress quadrilateral element for the Mindlin plate bending problem
    Li, Tan
    Qi, Zhaohui
    Ma, Xu
    Chen, Wanji
    STRUCTURAL ENGINEERING AND MECHANICS, 2015, 54 (03) : 393 - 417
  • [7] A REFINED HIGHER-ORDER GENERALLY ORTHOTROPIC C0 PLATE BENDING ELEMENT
    PANDYA, BN
    KANT, T
    COMPUTERS & STRUCTURES, 1988, 28 (02) : 119 - 133
  • [8] FINITE-ELEMENT FOR COMPOSITE PLATE-BENDING BASED ON EFFICIENT HIGHER-ORDER THEORY
    CHO, MH
    PARMERTER, R
    AIAA JOURNAL, 1994, 32 (11) : 2241 - 2248
  • [9] HIGHER-ORDER FINITE ELEMENT FOR COMPLEX PLATE STRUCTURES
    Beavers, James E.
    Beaufait, Fred W.
    1977, 103 (01): : 51 - 69
  • [10] A triangular fractal plate bending element
    Epstein, Marcelo
    Vernon, Philip
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2024, 75 (05):