HOMOTOPY CONTINUATION METHOD FOR THE NUMERICAL-SOLUTIONS OF GENERALIZED SYMMETRICAL EIGENVALUE PROBLEMS

被引:10
作者
DZENG, DC
LIN, WW
机构
来源
JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES B-APPLIED MATHEMATICS | 1991年 / 32卷
关键词
D O I
10.1017/S0334270000008523
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a generalised symmetric eigenvalue problem Ax = lambda-Mx, where A and M are real n by n symmetric matrices such that M is positive semidefinite. The purpose of this paper is to develop an algorithm based on the homotopy methods in [9, 11] to compute all eigenpairs, or a specified number of eigenvalues, in any part of the spectrum of the eigenvalue problem Ax = lambda-Mx. We obtain a special Kronecker structure of the pencil A-lambda-M, and give an algorithm to compute the number of eigenvalues in a prescribed interval. With this information, we can locate the lost eigenpair by using the homotopy algorithm when multiple arrivals occur. The homotopy maintains the structures of the matrices A and M (if any), and the homotopy curves are n disjoint smooth curves. This method can be used to find all/some isolated eigenpairs for large sparse A and M on SIMD machines.
引用
收藏
页码:437 / 456
页数:20
相关论文
共 16 条
[1]  
BUNCH JR, 1977, MATH COMPUT, V31, P163, DOI 10.1090/S0025-5718-1977-0428694-0
[2]   AN ALGORITHM FOR THE SYMMETRIC GENERALIZED EIGENVALUE PROBLEM [J].
BUNSEGERSTNER, A .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1984, 58 (APR) :43-68
[3]  
CHU MT, 1984, LINEAR ALGEBRA APPL, V59, P85, DOI 10.1016/0024-3795(84)90160-5
[4]   HOMOTOPY METHOD FOR GENERAL LAMBDA-MATRIX PROBLEMS [J].
CHU, MT ;
LI, TY ;
SAUER, T .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1988, 9 (04) :528-536
[5]   ALGORITHM FOR ILL-CONDITIONED GENERALIZED EIGENVALUE PROBLEM [J].
FIX, G ;
HEIBERGE.R .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1972, 9 (01) :78-&
[6]   GENERAL RAYLEIGH QUOTIENT ITERATION [J].
GELTNER, PB .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1981, 18 (05) :839-843
[7]   VARIATIONAL EQUATIONS FOR THE EIGENVALUES AND EIGENVECTORS OF NONSYMMETRIC MATRICES [J].
KALABA, R ;
SPINGARN, K ;
TESFATSION, L .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1981, 33 (01) :1-8
[8]   INDIVIDUAL TRACKING OF AN EIGENVALUE AND EIGENVECTOR OF A PARAMETERIZED MATRIX [J].
KALABA, R ;
SPINGARN, K ;
TESFATSION, L .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1981, 5 (04) :337-340
[9]   HOMOTOPY ALGORITHM FOR SYMMETRIC EIGENVALUE PROBLEMS [J].
LI, TY ;
RHEE, NH .
NUMERISCHE MATHEMATIK, 1989, 55 (03) :265-280
[10]   HOMOTOPY METHOD FOR GENERALIZED EIGENVALUE PROBLEMS AX=LAMBDA-BX [J].
LI, TY ;
SAUER, T .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1987, 91 :65-74