JULIA SETS

被引:0
|
作者
POPPE, C [1 ]
机构
[1] UNIV HEIDELBERG,SONDERFORSCHUNGSBEREICH 123,D-6900 HEIDELBERG,FED REP GER
来源
PHYSICA D | 1984年 / 11卷 / 03期
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
引用
收藏
页码:403 / 403
页数:1
相关论文
共 50 条
  • [31] ATTRACTOR SETS AND JULIA SETS IN LOW DIMENSIONS
    Fletcher, A.
    CONFORMAL GEOMETRY AND DYNAMICS, 2019, 23 : 117 - 129
  • [32] Shadowing and ω-limit sets of circular Julia sets
    Barwell, Andrew D.
    Meddaugh, Jonathan
    Raines, Brian E.
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2015, 35 : 1045 - 1055
  • [33] Topological complexity of Julia sets
    Jianyong Qiao
    Science in China Series A: Mathematics, 1997, 40 : 1158 - 1165
  • [34] On uniformly disconnected Julia sets
    Alastair N. Fletcher
    Vyron Vellis
    Mathematische Zeitschrift, 2021, 299 : 853 - 866
  • [35] Julia sets of expanding polynomials
    Blokh, A
    Cleveland, C
    Misiurewicz, M
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2005, 25 : 1691 - 1718
  • [36] 2 EXAMPLES OF JULIA SETS
    BEARDON, AF
    NONLINEARITY, 1992, 5 (03) : 771 - 775
  • [37] Julia Sets of Orthogonal Polynomials
    Jacob Stordal Christiansen
    Christian Henriksen
    Henrik Laurberg Pedersen
    Carsten Lunde Petersen
    Potential Analysis, 2019, 50 : 401 - 413
  • [38] Julia Sets in Parameter Spaces
    X. Buff
    C. Henriksen
    Communications in Mathematical Physics, 2001, 220 : 333 - 375
  • [39] On uniformly disconnected Julia sets
    Fletcher, Alastair N.
    Vellis, Vyron
    MATHEMATISCHE ZEITSCHRIFT, 2021, 299 (1-2) : 853 - 866
  • [40] CAYLEY PROBLEM AND JULIA SETS
    PEITGEN, HO
    SAUPE, D
    VONHAESELER, F
    MATHEMATICAL INTELLIGENCER, 1984, 6 (02): : 11 - 20