CHOICE OF SUITABLE INFORMATIVE PRIOR FOR THE SCALE PARAMETER OF THE MIXTURE OF LAPLACE DISTRIBUTION

被引:11
作者
Ali, Sajid [1 ,2 ]
Aslam, Muhammad [2 ]
Kazmi, Syed Mohsin Ali [3 ]
机构
[1] Bocconi Univ, Dept Dept Decis Sci, Milan, Italy
[2] Quaid I Azam Univ Islamabad, Dept Stat, Islamabad 45320, Pakistan
[3] Sustainable Dev Policy Inst Islamabad, Islamabad 44000, Pakistan
关键词
Censored sampling; Inverse transformation method; Hyperparameters; Elicitation; Fixed test termination time; Informative prior; Mixture distribution; Predictive intervals;
D O I
10.1285/i20705948v6n1p32
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The major problem in Bayesian analysis is the choice of prior for the specified model. In the current study, the motivation is the comparsion of the informative priors for the mixture of Laplace distribution under different loss functions. A prior is selected based on the minimum posterior risks criteria where Bayes estimates and posterior risk are evaluated using the square error loss function, the precautionary loss function, the weighted squared error loss function and the modified (quadratic) squared error loss function. Bayes estimates and respective posterior risks are evaluated in terms of sample size, censoring rate and proportion of the component of the mixture using Levy and Gumbel Type-II informative priors. Limiting expressions for the complete sample are also derived. A real-life mixture data application has been discussed. The Elicitation of hyperparameters of mixture through prior predictive approach has also argued.
引用
收藏
页码:32 / 56
页数:25
相关论文
共 36 条
[1]   Information matrices for normal and Laplace mixtures [J].
Ali, M. Masoom ;
Nadarajah, Saralees .
INFORMATION SCIENCES, 2007, 177 (03) :947-955
[2]  
Ali S., 2012, MODEL ASSISTED STAT, V7, P209
[3]  
[Anonymous], J STAT THEORY APPL
[4]  
[Anonymous], 2004, START SELECTED TOPIC
[5]   Reliability model using truncated skew-Laplace distribution [J].
Aryal, Gokarna ;
Rao, A. N. V. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2005, 63 (5-7) :E639-E646
[6]  
Ayyub B.M., 2001, ELICITATION EXPERT O
[7]   Reliability estimation and tolerance limits for Laplace distribution based on censored samples [J].
Balakrishnan, N ;
Chandramouleeswaran, MP .
MICROELECTRONICS AND RELIABILITY, 1996, 36 (03) :375-378
[8]  
Bansal A. K., 2007, BAYESIAN PARAMETRIC
[9]  
Berger JO, 1985, STAT DECISION THEORY
[10]   EXPECTED INFORMATION AS EXPECTED UTILITY [J].
BERNARDO, JM .
ANNALS OF STATISTICS, 1979, 7 (03) :686-690