MINIMAL 2-SPHERES WITH CONSTANT CURVATURE IN PN(C)

被引:36
作者
BANDO, S [1 ]
OHNITA, Y [1 ]
机构
[1] TOKYO METROPOLITAN UNIV, DEPT MATH, SETAGAYA KU, TOKYO 158, JAPAN
关键词
D O I
10.2969/jmsj/03930477
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:477 / 487
页数:11
相关论文
共 50 条
[31]   ON SOME CONFORMAL MINIMAL 2-SPHERES IN A COMPLEX PROJECTIVE SPACE [J].
Jiao, Xiaoxiang ;
Peng, Jiagui .
QUARTERLY JOURNAL OF MATHEMATICS, 2010, 61 (01) :87-101
[32]   Minimal two-spheres with constant curvature in the complex hyperquadric [J].
Peng, Chiakuei ;
Wang, Jun ;
Xu, Xiaowei .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2016, 106 (03) :453-476
[33]   Minimal two-spheres with constant curvature in the complex Grassmannians [J].
Peng, Chiakuei ;
Xu, Xiaowei .
ISRAEL JOURNAL OF MATHEMATICS, 2014, 202 (01) :1-20
[34]   Minimal two-spheres with constant curvature in the complex Grassmannians [J].
Chiakuei Peng ;
Xiaowei Xu .
Israel Journal of Mathematics, 2014, 202 :1-20
[35]   Totally real minimal 2-spheres in quaternionic projective space [J].
Yijun He ;
Changping Wang .
Science in China Series A: Mathematics, 2005, 48 :341-349
[36]   Totally real minimal 2-spheres in quaternionic projective space [J].
He, YJ ;
Wang, CP .
SCIENCE IN CHINA SERIES A-MATHEMATICS, 2005, 48 (03) :341-349
[37]   A quasi-local mass for 2-spheres with negative Gauss curvature [J].
Xiao Zhang .
Science in China Series A: Mathematics, 2008, 51
[38]   A quasi-local mass for 2-spheres with negative Gauss curvature [J].
ZHANG Xiao Institute of Mathematics Academy of Mathematics and Systems Science Chinese Academy of Sciences Beijing China .
Science in China(Series A:Mathematics), 2008, (09) :1644-1650
[39]   A quasi-local mass for 2-spheres with negative Gauss curvature [J].
Zhang Xiao .
SCIENCE IN CHINA SERIES A-MATHEMATICS, 2008, 51 (09) :1644-1650
[40]   Minimal two-spheres of constant curvature in a quaternion projective space [J].
Xiaoxiang Jiao ;
Yan Xu ;
Jialin Xin .
Annali di Matematica Pura ed Applicata (1923 -), 2022, 201 :1139-1155