IRREDUCIBILITY OF GENERALIZED HERMITE-LAGUERRE POLYNOMIALS

被引:6
作者
Laishram, Shanta [1 ]
Shorey, Tarlok N. [2 ]
机构
[1] Indian Stat Inst, Stat Math Unit, 7 SJS Sansanwal Marg, New Delhi 110016, India
[2] Indian Inst Technol, Dept Math, Bombay 400076, Maharashtra, India
关键词
irreducibility; Hermite-Laguerre polynomials; arithmetic progressions; primes;
D O I
10.7169/facm/2012.47.1.4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a rational q = u + alpha/d with u, alpha, d is an element of Z with u >= 0, 1 <= alpha < d, gcd (alpha, d) = 1, the generalized Hermite-Laguerre polynomials G(q) (x) are defined by Gq(x) = a(n)x(n) + a(n-1) (alpha + (n - 1 + u)d)x(n-1) + .... +a(1)(Pi(n-1)(i-1) (alpha + (i + u)d)) x + a(0) (Pi(n-1)(i-0) (alpha+(i + u)d)) where a(0), a(1), . . . , a(n) are arbitrary integers. We prove some irreducibility results of G(q) (x) when q is an element of {1/3, 2/3} and extend some of the earlier irreducibility results when q of the form u + 1/2. We also prove a new improved lower bound for greatest prime factor of product of consecutive terms of an arithmetic progression whose common difference is 2 and 3.
引用
收藏
页码:51 / 64
页数:14
相关论文
共 15 条
  • [1] A generalization of a third irreducibility theorem of I. Schur
    Allen, M
    Filaseta, M
    [J]. ACTA ARITHMETICA, 2004, 114 (02) : 183 - 197
  • [2] Cao ZF, 1999, ACTA ARITH, V91, P85
  • [3] Dusart P., 1998, THESIS
  • [4] Dusart P., 1999, C R MATH REP ACAD SC, V21, P53
  • [5] On the irreducibility of certain polynomials with coefficients as products of terms in an arithmetic progression
    Finch, Carrie E.
    Saradha, N.
    [J]. ACTA ARITHMETICA, 2010, 143 (03) : 211 - 226
  • [6] Number of prime divisors in a product of terms of an arithmetic progression
    Laishram, S
    Shorey, TN
    [J]. INDAGATIONES MATHEMATICAE-NEW SERIES, 2004, 15 (04): : 505 - 521
  • [7] Grimm's Conjecture on consecutive integers
    Laishram, Shanta
    Shorey, T. N.
    [J]. INTERNATIONAL JOURNAL OF NUMBER THEORY, 2006, 2 (02) : 207 - 211
  • [8] The greatest prime divisor of a product of terms in an arithmetic progression
    Laishram, Shanta
    Shorey, T. N.
    [J]. INDAGATIONES MATHEMATICAE-NEW SERIES, 2006, 17 (03): : 425 - 436
  • [9] Lehmer D.H., 1964, ILLINOIS J MATH, V8, P57
  • [10] Nagell T., 1958, ARK MAT, V3, P569