A MODEL-ORDER REDUCTION METHOD BASED ON KRYLOV SUBSPACES FOR MIMO BILINEAR DYNAMICAL SYSTEMS

被引:12
|
作者
Lin, Yiqin [1 ]
Bao, Liang [2 ,3 ]
Wei, Yimin [2 ,3 ]
机构
[1] Hunan Univ Sci & Engn, Dept Math & Computat Sci, Yongzhou 425100, Hunan, Peoples R China
[2] Fudan Univ, Sch Math Sci, Inst Math, Shanghai 200433, Peoples R China
[3] Fudan Univ, Minist Educ, Key Lab Math Nonlinear Sci, Shanghai, Peoples R China
基金
中国国家自然科学基金;
关键词
Bilinear system; Krylov subspace; moment matching; reduced-order modeling;
D O I
10.1007/BF02832354
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we present a Krylov subspace based projection method for reduced-order modeling of large scale bilinear multi-input multi-output (MIMO) systems. The reduced-order bilinear system is constructed in such a way that it can match a desired number of moments of multi-variable transfer functions corresponding to the kernels of Volterra series representation of the original system. Numerical examples report the effectiveness of this method.
引用
收藏
页码:293 / 304
页数:12
相关论文
共 50 条