A MODEL-ORDER REDUCTION METHOD BASED ON KRYLOV SUBSPACES FOR MIMO BILINEAR DYNAMICAL SYSTEMS

被引:12
|
作者
Lin, Yiqin [1 ]
Bao, Liang [2 ,3 ]
Wei, Yimin [2 ,3 ]
机构
[1] Hunan Univ Sci & Engn, Dept Math & Computat Sci, Yongzhou 425100, Hunan, Peoples R China
[2] Fudan Univ, Sch Math Sci, Inst Math, Shanghai 200433, Peoples R China
[3] Fudan Univ, Minist Educ, Key Lab Math Nonlinear Sci, Shanghai, Peoples R China
基金
中国国家自然科学基金;
关键词
Bilinear system; Krylov subspace; moment matching; reduced-order modeling;
D O I
10.1007/BF02832354
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we present a Krylov subspace based projection method for reduced-order modeling of large scale bilinear multi-input multi-output (MIMO) systems. The reduced-order bilinear system is constructed in such a way that it can match a desired number of moments of multi-variable transfer functions corresponding to the kernels of Volterra series representation of the original system. Numerical examples report the effectiveness of this method.
引用
收藏
页码:293 / 304
页数:12
相关论文
共 50 条
  • [1] Order reduction of bilinear MIMO dynamical systems using new block Krylov subspaces
    Lin, Yiqin
    Bao, Liang
    Wei, Yimin
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2009, 58 (06) : 1093 - 1102
  • [2] A Large Scale System Model-Order Reduction Method Based on SVD-Krylov
    Yan, Zhe
    Lu, Fangming
    Zhou, Lin
    INTERNATIONAL JOURNAL OF GRID AND DISTRIBUTED COMPUTING, 2016, 9 (10): : 119 - 128
  • [3] A projection method for model reduction of bilinear dynamical systems
    Bai, Zhaojun
    Skoogh, Daniel
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2006, 415 (2-3) : 406 - 425
  • [4] Reduction of large-scale dynamical systems by the Krylov subspaces method: Analysis of approaches
    N. E. Zubov
    E. A. Mikrin
    M. Sh. Misrikhanov
    A. V. Proletarskii
    V. N. Ryabchenko
    Journal of Computer and Systems Sciences International, 2015, 54 : 165 - 183
  • [5] Model Order Reduction for Parameter Dependent Substructured Systems using Krylov Subspaces
    Walker, Nadine
    Froehlich, Benjamin
    Eberhard, Peter
    IFAC PAPERSONLINE, 2018, 51 (02): : 553 - 558
  • [6] Krylov subspace-based model reduction for a class of bilinear descriptor systems
    Ahmad, Mian Ilyas
    Benner, Peter
    Goyal, Pawan
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2017, 315 : 303 - 318
  • [7] A fully adaptive rational global Arnoldi method for the model-order reduction of second-order MIMO systems with proportional damping
    Bonin, Thomas
    Fassbender, Heike
    Soppa, Andreas
    Zaeh, Michael
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2016, 122 : 1 - 19
  • [8] Krylov Subspaces Associated with Higher-Order Linear Dynamical Systems
    Roland W. Freund
    BIT Numerical Mathematics, 2005, 45 : 495 - 516
  • [9] Krylov subspaces associated with higher-order linear dynamical systems
    Freund, RW
    BIT NUMERICAL MATHEMATICS, 2005, 45 (03) : 495 - 516
  • [10] A Krylov subspace method based on multi-moment matching for model order reduction of large-scale second order bilinear systems
    Vakilzadeh, M.
    Eghtesad, M.
    Vatankhah, R.
    Mahmoodi, M.
    APPLIED MATHEMATICAL MODELLING, 2018, 60 : 739 - 757