A MODEL-ORDER REDUCTION METHOD BASED ON KRYLOV SUBSPACES FOR MIMO BILINEAR DYNAMICAL SYSTEMS

被引:12
|
作者
Lin, Yiqin [1 ]
Bao, Liang [2 ,3 ]
Wei, Yimin [2 ,3 ]
机构
[1] Hunan Univ Sci & Engn, Dept Math & Computat Sci, Yongzhou 425100, Hunan, Peoples R China
[2] Fudan Univ, Sch Math Sci, Inst Math, Shanghai 200433, Peoples R China
[3] Fudan Univ, Minist Educ, Key Lab Math Nonlinear Sci, Shanghai, Peoples R China
基金
中国国家自然科学基金;
关键词
Bilinear system; Krylov subspace; moment matching; reduced-order modeling;
D O I
10.1007/BF02832354
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we present a Krylov subspace based projection method for reduced-order modeling of large scale bilinear multi-input multi-output (MIMO) systems. The reduced-order bilinear system is constructed in such a way that it can match a desired number of moments of multi-variable transfer functions corresponding to the kernels of Volterra series representation of the original system. Numerical examples report the effectiveness of this method.
引用
收藏
页码:293 / 304
页数:12
相关论文
共 50 条
  • [1] Model-order reduction of kth order MIMO dynamical systems using block kth order Krylov subspaces
    Li, Bin
    Bao, Liang
    Lin, Yiqin
    Wei, Yimin
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2011, 88 (01) : 150 - 162
  • [2] Order reduction of bilinear MIMO dynamical systems using new block Krylov subspaces
    Lin, Yiqin
    Bao, Liang
    Wei, Yimin
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2009, 58 (06) : 1093 - 1102
  • [3] A Novel Krylov Method for Model Order Reduction of Quadratic Bilinear Systems
    Cao, Xingang
    Maubach, Joseph
    Weiland, Siep
    Schilders, Wil
    2018 IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2018, : 3217 - 3222
  • [4] Model-order reductions for MIMO systems using global Krylov subspace methods
    Chu, Chia-Chi
    Lai, Ming-Hong
    Feng, Wu-Shiung
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2008, 79 (04) : 1153 - 1164
  • [5] A Large Scale System Model-Order Reduction Method Based on SVD-Krylov
    Yan, Zhe
    Lu, Fangming
    Zhou, Lin
    INTERNATIONAL JOURNAL OF GRID AND DISTRIBUTED COMPUTING, 2016, 9 (10): : 119 - 128
  • [6] Model-order reduction of coupled DAE systems via ε-embedding technique and Krylov subspace method
    Jiang, Yao-Lin
    Chen, Chun-Yue
    Chen, Hai-Bao
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2012, 349 (10): : 3027 - 3045
  • [7] Model order reduction of MIMO bilinear systems by multi-order Arnoldi method
    Xiao, Zhi-Hua
    Jiang, Yao-Lin
    SYSTEMS & CONTROL LETTERS, 2016, 94 : 1 - 10
  • [8] Krylov subspace methods for model order reduction of bilinear control systems
    Breiten, Tobias
    Damm, Tobias
    SYSTEMS & CONTROL LETTERS, 2010, 59 (08) : 443 - 450
  • [9] ADAPTIVE TANGENTIAL INTERPOLATION IN RATIONAL KRYLOV SUBSPACES FOR MIMO DYNAMICAL SYSTEMS
    Druskin, V.
    Simoncini, V.
    Zaslavsky, M.
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2014, 35 (02) : 476 - 498
  • [10] Model-order reduction of large-scale second-order MIMO dynamical systems via a block second-order Arnoldi method
    Lin, Yiqin
    Bao, Liang
    Wei, Yimin
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2007, 84 (07) : 1003 - 1019