A COROTATIONAL FORMULATION FOR GEOMETRICALLY NONLINEAR FINITE-ELEMENT ANALYSIS OF SPATIAL BEAMS

被引:0
作者
JIANG, L
CHERNUKA, MW
机构
关键词
D O I
暂无
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
co-rotational procedure is presented in this paper for handling arbitrarily large three-dimensional rotations associated with geometrically nonlinear analysis of spatial beam structures. This procedure has been incorporated into two commonly used 3-D beam elements, the 2-node cubic beam element and the 3-node superparametric beam element, in our in-house general purpose finite element program, VAST. In the present procedure, the element tangent stiffness matrices are generated by using the standard updated Lagrangian formulation, while a co-rotational formulation is employed to update the internal force vectors during the Newton-Raphson iterations. A number of example problems have been analyzed and the result are in good agreement with analytical or published numerical solutions.
引用
收藏
页码:65 / 88
页数:24
相关论文
共 50 条
[21]   LARGE DEFLECTION, GEOMETRICALLY NONLINEAR FINITE-ELEMENT ANALYSIS OF CIRCULAR ARCHES [J].
SABIR, AB ;
LOCK, AC .
INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 1973, 15 (01) :37-47
[22]   GEOMETRICALLY-NONLINEAR FINITE-ELEMENT ANALYSIS OF LAMINATED COMPOSITE SHELLS [J].
SKVORTSOV, YV ;
KHASANOV, KS .
IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII AVIATSIONAYA TEKHNIKA, 1992, (01) :6-9
[23]   PARALLEL-VECTOR COMPUTATIONS FOR GEOMETRICALLY NONLINEAR FINITE-ELEMENT ANALYSIS [J].
BADDOURAH, MA ;
NGUYEN, DT .
COMPUTERS & STRUCTURES, 1994, 51 (06) :785-789
[24]   FINITE-ELEMENT RELIABILITY OF GEOMETRICALLY NONLINEAR UNCERTAIN STRUCTURES [J].
LIU, PL ;
DERKIUREGHIAN, A .
JOURNAL OF ENGINEERING MECHANICS-ASCE, 1991, 117 (08) :1806-1825
[25]   A geometrically nonlinear finite-element model of the cat eardrum [J].
Ladak, Hanif M. ;
Funnell, W. Robert J. ;
Decraemer, Willem F. ;
Dirckx, Joris J. J. .
Journal of the Acoustical Society of America, 2006, 119 (05) :2859-2868
[26]   A corotational mixed flat shell finite element for the efficient geometrically nonlinear analysis of laminated composite structures [J].
Liguori, Francesco S. ;
Madeo, Antonio .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2021, 122 (17) :4575-4608
[27]   A geometrically nonlinear finite-element model of the cat eardrum [J].
Ladak, Hanif M. ;
Funnell, W. Robert J. ;
Decraemer, Willem F. ;
Dirckx, Joris J. J. .
JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2006, 119 (05) :2859-2868
[28]   Modal Substructuring of Geometrically Nonlinear Finite-Element Models [J].
Kuether, Robert J. ;
Allen, Matthew S. ;
Hollkamp, Joseph J. .
AIAA JOURNAL, 2016, 54 (02) :691-702
[29]   A consistent corotational formulation for the nonlinear dynamic analysis of sliding beams [J].
Deng, Lanfeng ;
Zhang, Yahui .
JOURNAL OF SOUND AND VIBRATION, 2020, 476
[30]   Geometrically nonlinear flutter analysis with corotational shell finite element analysis and unsteady vortex-lattice method [J].
Tsushima, Natsuki ;
Arizono, Hitoshi ;
Tamayama, Masato .
JOURNAL OF SOUND AND VIBRATION, 2022, 520