DECOMPOSITION OF ALGEBRAS OVER F(Q)(X(1),...,X(M))

被引:9
作者
IVANYOS, G [1 ]
RONYAI, L [1 ]
SZANTO, A [1 ]
机构
[1] HUNGARIAN ACAD SCI,INST COMP & AUTOMAT,H-1132 BUDAPEST,HUNGARY
关键词
SYMBOLIC COMPUTATION; ASSOCIATIVE ALGEBRAS;
D O I
10.1007/BF01438277
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Let A be a finite dimensional associative algebra over the field F where F is a finite (algebraic) extension of the function field F(q)(X1,..., X(m)). Here F(q) denotes the finite field of q elements (q = p(l) for a prime p). We address the problem of computing the Jacobson radical Rad (A) of A and the problem of computing the minimal ideals of the radical-free part (Wedderburn decomposition). The algebra sl is given by structure constants over F and F is given by structure constants over F(q) (X1,..., X(m)). We give algorithms to find these structural components of A. Our methods run in polynomial time if m is constant, in particular in the case m = 1. The radical algorithm is deterministic. Our method for computing the Wedderburn deomposition of sl uses randomization (for factoring univariate polynomials over F(q)).
引用
收藏
页码:71 / 90
页数:20
相关论文
共 12 条
  • [1] BASTIDA JR, 1984, ENCY MATH ITS APPLIC, V22
  • [2] FACTORING POLYNOMIALS OVER LARGE FINITE FIELDS
    BERLEKAMP, ER
    [J]. MATHEMATICS OF COMPUTATION, 1970, 24 (111) : 713 - +
  • [3] EBERLY W, 1989, THESIS U TORONTO CAN
  • [4] EBERLY WM, 1991, COMPUT COMPLEX, V1, P179
  • [5] FRIEDL K, 1985, 17TH P ACM STOC PROV, P153
  • [6] GIANNI P, 1988, LECT NOTES COMPUT SC, V358, P300
  • [7] Herstein I. N., 1968, CARUS MATH MONOGRAPH, V15
  • [8] KERTESZ A, 1987, LECTURES ARTINIAN RI
  • [9] Pierce R., 1982, STUDIES HIST MODERN, V88
  • [10] Reiner Irving, 1975, LMS MONOGRAPHS, V5