3D SYMMETRY-CURVATURE DUALITY THEOREMS

被引:10
|
作者
YUILLE, A [1 ]
LEYTON, M [1 ]
机构
[1] RUTGERS STATE UNIV, DEPT PSYCHOL, NEW BRUNSWICK, NJ 08903 USA
来源
关键词
D O I
10.1016/0734-189X(90)90126-G
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We prove theorems showing a duality between the surface curvatures of three-dimensional objects and the existence of symmetry axes. More precisely, we prove that, given a surface, for each maximum or minimum of the principle curvature along a line of curvature, there is a symmetry axis terminating at this point. Moreover, such points are generically the only points at which these axes can terminate. These theorems generalize results obtained by Leyton for two-dimensional objects.
引用
收藏
页码:124 / 140
页数:17
相关论文
共 50 条
  • [21] Symmetry Detection of 3D Objects
    Jung, Wookyoung
    Yamauchi, Takashi
    JOURNAL OF COGNITIVE SCIENCE, 2011, 12 (01) : 33 - 64
  • [22] Symmetry detection in 3D scenes
    Sawada, Tadamasa
    Pizlo, Zygmunt
    COMPUTATIONAL IMAGING V, 2007, 6498
  • [23] Coloring 3D symmetry set: Perceptual meaning and significance in 3D
    Tari, S
    VISUAL INFORMATION PROCESSING VIII, 1999, 3716 : 105 - 109
  • [24] On the 3D Curvature and Dynamics of the Musca Filament
    Kaminsky, Aidan
    Bonne, Lars
    Arzoumanian, Doris
    Coude, Simon
    ASTROPHYSICAL JOURNAL, 2023, 948 (02):
  • [25] Curvature and Torsion Estimators for 3D Curves
    Thanh Phuong Nguyen
    Debled-Rennesson, Isabelle
    ADVANCES IN VISUAL COMPUTING, PT I, PROCEEDINGS, 2008, 5358 : 688 - 699
  • [26] The pulsar synchrotron in 3D: curvature radiation
    Contopoulos, Ioannis
    Kalapotharakos, Constantinos
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2010, 404 (02) : 767 - 778
  • [27] Convex Global 3D Registration with Lagrangian Duality
    Briales, Jesus
    Gonzalez-Jimenez, Javier
    30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, : 5612 - 5621
  • [28] S-duality in 3D gravity with torsion
    Mielke, Eckehard W.
    Maggiolo, Ali A. Rincon
    ANNALS OF PHYSICS, 2007, 322 (02) : 341 - 362
  • [29] 3d "chiral" Kutasov-Schwimmer duality
    Nii, Keita
    NUCLEAR PHYSICS B, 2020, 952
  • [30] Equations on Knot Polynomials and 3d/5d Duality
    Mironov, A.
    Morozov, A.
    SIXTH INTERNATIONAL SCHOOL ON FIELD THEORY AND GRAVITATION-2012, 2012, 1483 : 189 - 211