On the asymptotic formulas along the Zl-extensions

被引:0
作者
Jaulent, Jean-Francois [1 ]
Maire, Christian [2 ]
Perbet, Guillaume [2 ]
机构
[1] Univ Bordeaux, CNRS, Inst Math Bordeaux, UMR 5251, F-33405 Talence, France
[2] UFR Sci & Tech, CNRS, Lab Math, UMR 6623, 16 Route Gray, F-25030 Besancon, France
来源
ANNALES MATHEMATIQUES DU QUEBEC | 2013年 / 37卷 / 01期
关键词
Iswasawa invariants; Restricted ramification; Asymptotic formulas; Cyclotomic extension; Class field theory;
D O I
10.1007/s40316-013-0005-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let K-infinity be a Z(l)-extension of a number field K. We consider the Galois group Cl-T(S) (K-n) of the maximal S-ramified and T -split abelian pro-l-extension attached to each layer K-n of the tower K-infinity/K. In this paper we clarify some asymptotic formulas given by Jaulent and Maire (Canad. Math. Bull. 46(2): 178-190, 2003), relating the orders of the l(n)-quotients of the groups Cl-T(S) (K-n) to structural invariants rho(S) (T), mu(S)(T) and.ST of the Iwasawa module X-T(S) := lim(<-)Cl (S)(T) (K-n). We especially show that the lambda invariant lambda(S)(T\) of those quotients can sensibly differ from the structural invariant lambda(S)(T), and we illustrate this fact with explicit examples, where it can be made as large as desired, positive or negative.
引用
收藏
页码:63 / 78
页数:16
相关论文
共 9 条
  • [1] [Anonymous], 2008, GRUNDLEHREN MATH WIS
  • [2] Gras G., 1998, J THEORIE NOMBRES BO, V10, P399, DOI [10.5802/JTNB.234, DOI 10.5802/JTNB.234]
  • [3] Jaulent J. -F, 1998, J THEORIE NOMBRES BO, V10, P355
  • [4] Jaulent J.-F., 1986, PUB MATH FAC SCI BES, P1985
  • [5] Jaulent J.- F., 2005, J THEOR NOMBR BORDX, V17, P527, DOI DOI 10.5802/jtnb.506
  • [6] On Iwasawa invariants of cyclotomic towers
    Jaulent, JF
    Maire, C
    [J]. CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2003, 46 (02): : 178 - 190
  • [7] Salle L, 2010, OSAKA J MATH, V47, P921
  • [8] Serre Jean-Pierre, 1995, SEMINAIRE BOURBAKI, V5, P83
  • [9] Washington L., 1997, GRADUATE TEXTS MATH, V83