Algorithmic Solution of Stochastic Differential Equations

被引:0
作者
Schurz, Henri [1 ]
机构
[1] Southern Illinois Univ, Dept Math, 1245 Lincoln Dr, Carbondale, IL 62901 USA
关键词
stochastic differential equations; strong solution; PDE-based algorithm;
D O I
10.3390/a3030216
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This brief note presents an algorithm to solve ordinary stochastic differential equations (SDEs). The algorithm is based on the joint solution of a system of two partial differential equations and provides strong solutions for finite-dimensional systems of SDEs driven by standard Wiener processes and with adapted initial data. Several examples illustrate its use.
引用
收藏
页码:216 / 223
页数:8
相关论文
共 16 条
[1]  
Allen E., 2008, MODELING ITO STOCHAS
[2]  
[Anonymous], 1988, INTRO STOCHASTIC DIF
[3]  
Arnold Ludwig, 1974, STOCHASTIC DIFFERENT
[4]  
Friedman A., 1975, PROBABILITY MATH STA, V28
[5]  
Gikhman I.I., 1971, STOCHASTISCHE DIFFER
[6]  
Ito K., 1951, NAGOYA MATH J, V3, P55, DOI DOI 10.1017/S0027763000012216
[7]  
Ito K., 1944, P IMPERIAL ACAD, V20, P519, DOI DOI 10.3792/PIA/1195572786
[8]  
Karatzas I., 1988, BROWNIAN MOTION STOC, DOI 10.1007/978-1-4612-0949-2
[9]  
Krylov N.V., 1995, INTRO THEORY DIFFUSI
[10]  
Oksendal B., 1985, STOCHASTIC INTEGRATI