BIFURCATIONS IN A PREDATOR-PREY MODEL WITH MEMORY AND DIFFUSION .1. ANDRONOV-HOPF BIFURCATION

被引:33
作者
CAVANI, M
FARKAS, M
机构
[1] UNIV ORIENTE,DEPT MATEMAT,CUMANA,VENEZUELA
[2] TECH UNIV BUDAPEST,SCH MATH,H-1521 BUDAPEST,HUNGARY
关键词
D O I
10.1007/BF01874129
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
[No abstract available]
引用
收藏
页码:213 / 229
页数:17
相关论文
共 13 条
[1]  
ANDRONOV AA, 1967, THEORY BIFURCATIONS
[2]  
CAVANI M, 1990, THESIS U CENTRAL VEN
[3]  
Cushing J. M., 1977, LECT NOTES BIOMATH, V20
[4]   MULTIPARAMETER BIFURCATION DIAGRAMS IN PREDATOR-PREY MODELS WITH TIME-LAG [J].
FARKAS, A ;
FARKAS, M ;
SZABO, G .
JOURNAL OF MATHEMATICAL BIOLOGY, 1988, 26 (01) :93-103
[5]   THE STABLE COEXISTENCE OF COMPETING SPECIES ON A RENEWABLE RESOURCE [J].
FARKAS, M ;
FREEDMAN, HI .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1989, 138 (02) :461-472
[7]   STABILITY CONDITIONS FOR 2 PREDATOR ONE PREY SYSTEMS [J].
FARKAS, M ;
FREEDMAN, HI .
ACTA APPLICANDAE MATHEMATICAE, 1989, 14 (1-2) :3-10
[8]   COMPETING PREDATORS [J].
HSU, SB ;
HUBBELL, SP ;
WALTMAN, P .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1978, 35 (04) :617-625
[9]   TIME-DELAY IN PREY-PREDATOR MODELS .2. BIFURCATION THEORY [J].
MACDONALD, N .
MATHEMATICAL BIOSCIENCES, 1977, 33 (3-4) :227-234
[10]  
May RM, 1973, STABILITY COMPLEXITY