THE INFLUENCE OF STRUCTURE AND COORDINATION ON THE P-31-CHEMICAL SHIFT IN PHOSPHATES

被引:23
作者
STERNBERG, U
PIETROWSKI, F
PRIESS, W
机构
[1] Friedrich-Schiller-Universität Jena, O-6900 Jena, Sektion Physik
来源
ZEITSCHRIFT FUR PHYSIKALISCHE CHEMIE NEUE FOLGE | 1990年 / 168卷
关键词
PHOSPHATES; CHEMICAL SHIFT; ATOMIC CHARGES; SEMIEMPIRICAL THEORY;
D O I
10.1524/zpch.1990.168.Part_1.115
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In the first part of the paper a semiempirical formula for the calculation of the P-31-chemical shift is derived from the recently developed bond polarization theory. This formula contains in the case of phosphates only three empirical parameters: (i) the chemical shift of the unpolarized first bond sphere represented by an isolated (PO4)3-, (ii) the chemical shift change with P - O sigma-bond polarization, and (iii) the change with P - O d-p-pi-bond polarization. The last effect is essential for a meaningful description of the phosphorous chemical shift. The three parameters are estimated from a calculation of the bond polarization energies of 18 phosphates. The presented correlation has a mean error of only 2.9 ppm and represents therefore the first quantitative predictive tool for the calculation of chemical shifts of phosphates. The same method can be used for the calculation of atomic charges. Former empirical correlations between structure and chemical shift can be explained using the bond polarization formula.
引用
收藏
页码:115 / 128
页数:14
相关论文
共 50 条
  • [1] Ab initio cluster calculations of the chemical shift tensor on the 31P nuclei in the ring crystal phosphates
    Vyalikh, AV
    Vorotilova, LS
    Shchegolev, BF
    PHOSPHORUS SULFUR AND SILICON AND THE RELATED ELEMENTS, 2001, 170 : 1 - 3
  • [2] CHEMICAL-STATE DETECTION OF DIBUTYL PHOSPHATE USING P-31 NMR CHEMICAL-SHIFT CHANGE
    UETAKE, N
    CANADIAN JOURNAL OF CHEMISTRY-REVUE CANADIENNE DE CHIMIE, 1991, 69 (02): : 322 - 326
  • [3] Regional Differences in Muscle Energy Metabolism in Human Muscle by 31P-Chemical Shift Imaging
    Kime, Ryotaro
    Kaneko, Yasuhisa
    Hongo, Yoshinori
    Ohno, Yusuke
    Sakamoto, Ayumi
    Katsumura, Toshihito
    OXYGEN TRANSPORT TO TISSUE XXXVII, 2016, 876 : 49 - 54
  • [4] Ab Initio Calculations of 31P NMR Chemical Shielding Anisotropy Tensors in Phosphates: Variations Due to Ring Formation
    Alam, Todd M.
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2002, 3 (08): : 888 - 906
  • [5] CHEMICAL-SHIFT IMAGING OF HUMAN BRAIN - AXIAL, SAGITTAL, AND CORONAL P-31 METABOLITE IMAGES
    VIGNERON, DB
    NELSON, SJ
    MURPHYBOESCH, J
    KELLEY, DAC
    KESSLER, HB
    BROWN, TR
    TAYLOR, JS
    RADIOLOGY, 1990, 177 (03) : 643 - 649
  • [6] MALIGNANT HEPATIC-TUMORS - P-31 MR SPECTROSCOPY WITH ONE-DIMENSIONAL CHEMICAL-SHIFT IMAGING
    FRANCIS, IR
    CHENEVERT, TL
    GUBIN, B
    COLLOMB, L
    ENSMINGER, W
    WALKERANDREWS, S
    GLAZER, GM
    RADIOLOGY, 1991, 180 (02) : 341 - 344
  • [7] An evaluation of chemical shift index-based secondary structure determination in proteins: influence of random coil chemical shifts.
    Mielke S.P.
    Krishnan V.V.
    Journal of Biomolecular NMR, 2004, 30 (2) : 143 - 153
  • [8] Enhanced Chemical Shift Analysis for Secondary Structure prediction of protein
    Kim, Won-Je
    Rhee, Jin-Kyu
    Yi, Jong-Jae
    Lee, Bong-Jin
    Son, Woo Sung
    JOURNAL OF THE KOREAN MAGNETIC RESONANCE SOCIETY, 2014, 18 (01): : 36 - 40
  • [9] Pressure response of 31P chemical shifts of adenine nucleotides
    Karl, Matthias
    Spoerner, Michael
    Thuy-Vy Pham
    Narayanan, Sunilkumar Puthenpurackal
    Kremer, Werner
    Kalbitzer, Hans Robert
    BIOPHYSICAL CHEMISTRY, 2017, 231 : 50 - 54
  • [10] The Ad-MD method to calculate NMR shift including effects due to conformational dynamics: The 31P NMR shift in DNA
    Fukal, Jiri
    Budesinsky, Milos
    Pav, Ondrej
    Jurecka, Petr
    Zgarbova, Marie
    Sebera, Jakub
    Sychrovsky, Vladimir
    JOURNAL OF COMPUTATIONAL CHEMISTRY, 2022, 43 (02) : 132 - 143