ISOPROTERENOL STIMULATES SHIFT OF G-PROTEINS FROM PLASMA-MEMBRANE TO PINOCYTOTIC VESICLES IN RAT ADIPOCYTES - A POSSIBLE MEANS OF SIGNAL DISSEMINATION

被引:61
|
作者
HARAGUCHI, K
RODBELL, M
机构
关键词
cAMP; cholera toxin; pertussis toxin; subcellular fractionation; Western blotting;
D O I
10.1073/pnas.87.3.1208
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Guanine nucleotide-binding regulatory proteins (G proteins) are linked to a large number of surface membrane receptors and appear to regulate a variety of effector systems located both in the plasma membrane and in other parts of the cell. The mechanism of the disseminative actions of G proteins remains obscure. During an investigation of the fate of two types of G proteins, G(s) and G(i) in rat adipocytes, we unexpectedly found that isoproterenol, which stimulates cAMP levels and lipolysis in these cells, induces parallel increases in both G(s) and G(i) in a low-density microsomal fraction rich in endosomes and Golgi bodies. Two plasma membrane constitutive enzymes, adenylyl cyclase and 5'-nucleotidase, are also elevated in this fraction. NaF and NaN3, metabolic inhibitors, block the redistribution process. The isoproterenol-stimulated shifts are completely reversible after removal of the hormone, indicating a recycling, endocytic process. The endocytic process seems to be fluid phase endocytosis, or pinocytosis, since isoproterenol stimulates the uptake of both fluorescent-labeled dextran and horseradish peroxidase into the same vesicles containing G(s). However, the vesicles that accumulate in response to isoproterenol seem heterogenous in properties that may reflect the lipolytic process induced by isoproterenol. It is speculated that the 'pinosomes' formed in response to lipolytic hormones may continually produce signals within the cellular interior during their processing and cycling. Hence, signal production in response to hormones need not be confined to the cell membrane; circulating pinosomes may be responsible for some of the disseminative effects of hormones.
引用
收藏
页码:1208 / 1212
页数:5
相关论文
共 1 条
  • [1] CHARACTERIZATION OF SYNAPTOPHYSIN AND G-PROTEINS IN SYNAPTIC VESICLES AND PLASMA-MEMBRANE OF APLYSIA-CALIFORNICA
    CHIN, GJ
    VOGEL, SS
    ELSTE, AM
    SCHWARTZ, JH
    BRAIN RESEARCH, 1990, 508 (02) : 265 - 272