2-DIMENSIONAL POLYNOMIAL RESIDUE NUMBER SYSTEM

被引:0
|
作者
YANG, MC [1 ]
WU, JL [1 ]
机构
[1] NATL TAIWAN UNIV,DEPT COMP SCI & INFORMAT ENGN,TAIPEI 10764,TAIWAN
关键词
POLYNOMIAL RESIDUE NUMBER SYSTEM; 2-DIMENSIONAL CONVOLUTIONS; FAST FOURIER TRANSFORM; QUOTIENT FIELD;
D O I
10.1016/0165-1684(94)90075-2
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The polynomial residue number system (PRNS) has been considered as a useful tool for digital signal processing (DSP) since it can support parallel, carry-free, high speed arithmetic with minimum multiplication count provided that an appropriate modular ring is chosen. In this paper, the properties of two-dimensional (2-D) PRNS are investigated in detail. It is shown that in the 2-D PRNS system, the theoretical lower bound for multiplication count of polynomial products can be achieved in some carefully chosen ring. Application of the proposed 2-D PRNS for computing 2-D circular convolution, which involves intensive multiplication operations, is also presented.
引用
收藏
页码:295 / 306
页数:12
相关论文
共 19 条
  • [1] Error detecting AES using polynomial residue number systems
    Chu, Junfeng
    Benaissa, Mohammed
    MICROPROCESSORS AND MICROSYSTEMS, 2013, 37 (02) : 228 - 234
  • [2] A 2-DIMENSIONAL, DISTRIBUTED LOGIC ARCHITECTURE
    IRWIN, MJ
    OWENS, RM
    IEEE TRANSACTIONS ON COMPUTERS, 1991, 40 (10) : 1094 - 1101
  • [3] DEVELOPMENT OF HOMOMORPHIC ENCRYPTION SCHEME BASED ON POLINOMIAL RESIDUE NUMBER SYSTEM
    Chervyakov, N. I.
    Babenko, M. G.
    Kucherov, N. N.
    SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2015, 12 : C33 - C41
  • [4] 2-DIMENSIONAL FFT ALGORITHMS ON HYPERCUBE AND MESH MACHINES
    ANGELOPOULOS, G
    PITAS, I
    SIGNAL PROCESSING, 1993, 30 (03) : 355 - 371
  • [5] Automated Scalable Address Generation Patterns for 2-Dimensional Folding Schemes in Radix-2 FFT Implementations
    Minotta, Felipe
    Jimenez, Manuel
    Rodriguez, Domingo
    ELECTRONICS, 2018, 7 (03):
  • [6] Fast algorithms for the multi-dimensional Jacobi polynomial transform
    Bremer, James
    Pang, Qiyuan
    Yang, Haizhao
    APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2021, 52 (52) : 231 - 250
  • [7] Multi-scale RWKV with 2-dimensional temporal convolutional network for short-term photovoltaic power forecasting
    Hao, Jianhua
    Liu, Fangai
    Zhang, Weiwei
    ENERGY, 2024, 309
  • [8] Using Machine Learning Techniques to Recover Prismatic Cirrus Ice Crystal Size from 2-Dimensional Light Scattering Patterns
    Priori, Daniel
    de Sousa, Giseli
    Roisenberg, Mauro
    Stopford, Christopher
    Hesse, Evelyn
    Salawu, Emmanuel
    Davey, Neil
    Sun, Yi
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2016, PT II, 2016, 9887 : 372 - 379
  • [9] A 100 MHz 7.84 mm2 31.7 msec 439 mW 512-point 2-dimensional FFT single-chip processor
    Miyamoto, N
    Karnan, L
    Maruo, K
    Kotani, K
    Ohmi, T
    IEICE TRANSACTIONS ON ELECTRONICS, 2004, E87C (04) : 502 - 509
  • [10] A Real/Complex Logarithmic Number System ALU
    Arnold, Mark G.
    Collange, Sylvain
    IEEE TRANSACTIONS ON COMPUTERS, 2011, 60 (02) : 202 - 213