SOLUTION OF A FUNCTIONAL-EQUATION AND APPLICATIONS

被引:0
作者
YANG, YH [1 ]
机构
[1] NYU,COURANT INST,NEW YORK,NY 10012
关键词
D O I
10.1006/jfan.1994.1011
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We propose a general method to solve a complex functional equation by reducing it to a boundary value problem of the Laplace equation. We apply this method to study Peskin's cochlea model, and the spectral theory of a self-adjoint operator. (C) 1994 Academic Press, Inc.
引用
收藏
页码:281 / 297
页数:17
相关论文
共 10 条
[1]  
Ahlfors L., 1966, COMPLEX ANAL
[2]  
Friedrichs K.O., 1973, SPECTRAL THEORY OPER, DOI [10.1007/978-1-4612-6396-8, DOI 10.1007/978-1-4612-6396-8]
[3]  
HELGASON S, 1981, TOPICS HARMONIC ANAL
[4]   A MATHEMATICAL-MODEL OF THE DYNAMICS OF THE INNER-EAR [J].
HOLMES, MH .
JOURNAL OF FLUID MECHANICS, 1982, 116 (MAR) :59-75
[5]  
Isaacson E., 1979, THESIS NEW YORK U
[6]   SOLUTION OF A TWO-DIMENSIONAL COCHLEA MODEL USING TRANSFORM TECHNIQUES [J].
LEVEQUE, RJ ;
PESKIN, CS ;
LAX, PD .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1985, 45 (03) :450-464
[7]   SOLUTION OF A TWO-DIMENSIONAL COCHLEA MODEL WITH FLUID VISCOSITY [J].
LEVEQUE, RJ ;
PESKIN, CS ;
LAX, PD .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1988, 48 (01) :191-213
[8]  
NEU JC, 1985, J ACOUST SOC AM, V77, P2107
[9]  
PESKIN CS, 1981, LECT APPL MATH, V19, P38
[10]  
Von Bekesy G, 1960, EXPT HEARING