Collaborative filtering and inference rules for context-aware learning object recommendation

被引:23
|
作者
Lemire, Daniel [1 ]
Boley, Harold [2 ]
McGrath, Sean [3 ]
Ball, Marcel [3 ]
机构
[1] Univ Quebec Montreal, 4750 Ave Henri Julien, Montreal, PQ H2T 3E4, Canada
[2] NRC, IIT eBusiness, Semant Web Lab, Fredericton, NB E3B 9W4, Canada
[3] 3 UNB, Comp Sci, Fredericton, NB E3B 5A3, Canada
关键词
Learning Objects; Semantic Web; Collaborative Filtering; Recommender Systems; Slope One; Inference Rules; RuleML;
D O I
10.1108/17415650580000043
中图分类号
G40 [教育学];
学科分类号
040101 ; 120403 ;
摘要
Learning objects strive for reusability in e-Learning to reduce cost and allow personalization of content. We show why learning objects require adapted Information Retrieval systems. In the spirit of the Semantic Web, we discuss the semantic description, discovery, and composition of learning objects. As part of our project, we tag learning objects with both objective (e.g., title, date, and author) and subjective (e.g., quality and relevance) metadata. We present the RACOFI (Rule-Applying Collaborative Filtering) Composer prototype with its novel combination of two libraries and their associated engines: a collaborative filtering system and an inference rule system. We developed RACOFI to generate context-aware recommendation lists. Context is handled by multidimensional predictions produced from a database-driven scalable collaborative filtering algorithm. Rules are then applied to the predictions to customize the recommendations according to user profiles. The RACOFI Composer architecture has been developed into the context-aware music portal inDiscover.
引用
收藏
页码:179 / +
页数:11
相关论文
共 50 条
  • [31] Group Context-Aware Recommendation Systems
    Smirnov, A. V.
    Shilov, N. G.
    Ponomarev, A. V.
    Kashevnik, A. M.
    Parfenov, V. G.
    SCIENTIFIC AND TECHNICAL INFORMATION PROCESSING, 2014, 41 (05) : 325 - 334
  • [32] A graphical model for context-aware visual content recommendation
    Boutemedjet, Sabri
    Ziou, Djemel
    IEEE TRANSACTIONS ON MULTIMEDIA, 2008, 10 (01) : 52 - 62
  • [33] Personalized Context-Aware QoS Prediction for Web Services Based on Collaborative Filtering
    Xie, Qi
    Wu, Kaigui
    Xu, Jie
    He, Pan
    Chen, Min
    ADVANCED DATA MINING AND APPLICATIONS (ADMA 2010), PT II, 2010, 6441 : 368 - 375
  • [34] Demand-driven Cache Allocation Based on Context-aware Collaborative Filtering
    Chen, Muhao
    Zhao, Qi
    Du, Pengyuan
    Zaniolo, Carlo
    Gerla, Mario
    PROCEEDINGS OF THE 2018 THE NINETEENTH INTERNATIONAL SYMPOSIUM ON MOBILE AD HOC NETWORKING AND COMPUTING (MOBIHOC '18), 2018, : 302 - 303
  • [35] A Fuzzy Trust Enhanced Collaborative Filtering for Effective Context-Aware Recommender Systems
    Linda, Sonal
    Bharadwaj, Kamal K.
    PROCEEDINGS OF FIRST INTERNATIONAL CONFERENCE ON INFORMATION AND COMMUNICATION TECHNOLOGY FOR INTELLIGENT SYSTEMS: VOL 2, 2016, 51 : 227 - 237
  • [36] Personalized Context-Aware Collaborative Filtering Based on Neural Network and Slope One
    Gao, Min
    Wu, Zhongfu
    COOPERATIVE DESIGN, VISUALIZATION, AND ENGINEERING, PROCEEDINGS, 2009, 5738 : 109 - 116
  • [37] TCMF: Trust-based Context-aware Matrix Factorization For Collaborative Filtering
    Li, Jiyun
    Sun, Caiqi
    Lv, Juntao
    2014 IEEE 26TH INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE (ICTAI), 2014, : 815 - 821
  • [38] Differential Context Relaxation for Context-Aware Travel Recommendation
    Zheng, Yong
    Burke, Robin
    Mobasher, Bamshad
    E-COMMERCE AND WEB TECHNOLOGIES, EC-WEB 2012, 2012, 123 : 88 - 99
  • [39] Effective Context-aware Recommendation on the Semantic Web
    Kim, Sungrim
    Kwon, Joonhee
    INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND NETWORK SECURITY, 2007, 7 (08): : 154 - 159
  • [40] Towards latent context-aware recommendation systems
    Unger, Moshe
    Bar, Ariel
    Shapira, Bracha
    Rokach, Lior
    KNOWLEDGE-BASED SYSTEMS, 2016, 104 : 165 - 178