The heterogeneity and preponderence of other cell types present in cultures has greatly impeded our ability to study dopamine neurons. In this report, we describe methods for isolating nearly pure dopamine neurons far study in culture. To do so, the lipid-soluble dye, 1,1'-dioctadecyl-3,3,3'3'-tetramethylindocarbocyanine perchlorate (diI) was injected in to the embryonic rat striata where it was taken up by nerve terminals and transported overnight back to the innervating perikarya in the ventral midbrain. Midbrain cells were then dissected, dissociated and separated on the basis of their (rhodamine) fluorescence by flow cytometry. Nearly all cells recovered as fluorescent positive (> 98%) were also immunoreactive for the dopamine specific enzyme tyrosine hydroxylase (80%-96%). Little contamination by other cell types was observed after labeling for specific neuronal and glial markers. Purified dopamine neurons continued to thrive and elaborate neuronal processes for at least 3 days in culture. Using this new model, it may now be possible to directly study the cellular and molecular processes regulating the survival and functioning of developing, injured and transplanted dopamine neurons.