A TOPOLOGICAL INVARIANT FOR VOLUME PRESERVING DIFFEOMORPHISMS

被引:8
作者
GAMBAUDO, JM [1 ]
PECOU, E [1 ]
机构
[1] INST NONLINEAIRE NICE,CNRS,UMR 129,F-06560 VALBONNE,FRANCE
关键词
D O I
10.1017/S0143385700008506
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For a smooth diffeomorphism f in R(n+2), which possesses an invariant n-torus T-n, such that the restriction firn is topologically conjugate to an irrational rotation, we define a number which represents the way the normal bundle to the torus T-n asymptotically wraps around T-n. We prove that this number is a topological invariant among volume-preserving maps. This result can be seen as a generalization of a theorem by Naishul, for which we give a simple proof.
引用
收藏
页码:535 / 541
页数:7
相关论文
共 4 条
[1]   EULER AND MASLOV COCYCLES [J].
BARGE, J ;
GHYS, E .
MATHEMATISCHE ANNALEN, 1992, 294 (02) :235-265
[2]   INFINITE CASCADES OF BRAIDS AND SMOOTH DYNAMICAL-SYSTEMS [J].
GAMBAUDO, JM ;
SULLIVAN, D ;
TRESSER, C .
TOPOLOGY, 1994, 33 (01) :85-94
[3]  
NAISHUL VA, 1982, T MOSCOW MATH SOC, V2, P239
[4]   ASYMPTOTIC CYCLES [J].
SCHWARTZMAN, S .
ANNALS OF MATHEMATICS, 1957, 66 (02) :270-284