QUANTUM-MECHANICS AND POLYNOMIALS OF A DISCRETE VARIABLE

被引:24
作者
FLOREANINI, R [1 ]
LETOURNEUX, J [1 ]
VINET, L [1 ]
机构
[1] UNIV MONTREAL,PHYS NUCL LAB,MONTREAL H3C 3J7,QUEBEC,CANADA
关键词
D O I
10.1006/aphy.1993.1072
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The recursive Lanczos method for solving the Schrödinger equation is applied to systems with dynamical symmetries and given a group theoretical formulation. An algebraic interpretation of various classical orthogonal polynomials of a discrete variable is obtained in this quantum mechanical context. © 1993 Academic Press, Inc.
引用
收藏
页码:331 / 349
页数:19
相关论文
共 19 条
[11]  
HAYDOCK R, 1985, LECT NOTES MATH, V1171
[12]   KRAWTCHOUK POLYNOMIALS, A UNIFICATION OF 2 DIFFERENT GROUP THEORETIC INTERPRETATIONS [J].
KOORNWINDER, TH .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1982, 13 (06) :1011-1023
[13]   AN ITERATION METHOD FOR THE SOLUTION OF THE EIGENVALUE PROBLEM OF LINEAR DIFFERENTIAL AND INTEGRAL OPERATORS [J].
LANCZOS, C .
JOURNAL OF RESEARCH OF THE NATIONAL BUREAU OF STANDARDS, 1950, 45 (04) :255-282
[14]   LIE THEORY AND DIFFERENCE EQUATIONS .I. [J].
MILLER, W .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1969, 28 (02) :383-&
[15]  
Nikiforov A.F., 1991, CLASSICAL ORTHOGONAL
[16]   NEW FINDINGS IN QUANTUM-MECHANICS (PARTIAL ALGEBRAIZATION OF THE SPECTRAL PROBLEM) [J].
SHIFMAN, MA .
INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1989, 4 (12) :2897-2952
[17]  
Whitehead R. R., 1977, ADV NUCL PHYS, V9, P123, DOI [10.1007/978-1-4615-8234-2_2, DOI 10.1007/978-1-4615-8234-2_2]
[18]  
Wybourne B.G., 1974, CLASSICAL GROUPS PHY
[19]  
[No title captured]