QUANTUM-MECHANICS AND POLYNOMIALS OF A DISCRETE VARIABLE

被引:24
作者
FLOREANINI, R [1 ]
LETOURNEUX, J [1 ]
VINET, L [1 ]
机构
[1] UNIV MONTREAL,PHYS NUCL LAB,MONTREAL H3C 3J7,QUEBEC,CANADA
关键词
D O I
10.1006/aphy.1993.1072
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The recursive Lanczos method for solving the Schrödinger equation is applied to systems with dynamical symmetries and given a group theoretical formulation. An algebraic interpretation of various classical orthogonal polynomials of a discrete variable is obtained in this quantum mechanical context. © 1993 Academic Press, Inc.
引用
收藏
页码:331 / 349
页数:19
相关论文
共 19 条
[1]  
ASKEY R, 1992, IN PRESS 15 P WORKSH
[2]  
ASKEY R, 1985, MEM AM MATH SOC, V319
[3]  
ATAKISHIYEV NM, 1985, ANN PHYS-BERLIN, V42, P25, DOI 10.1002/andp.19854970104
[4]   A UNITARY REPRESENTATION OF SL(2,R) [J].
BACRY, H .
JOURNAL OF MATHEMATICAL PHYSICS, 1990, 31 (09) :2061-2077
[5]   THE ATTRACTIVE COULOMB POTENTIAL POLYNOMIALS [J].
BANK, E ;
ISMAIL, MEH .
CONSTRUCTIVE APPROXIMATION, 1985, 1 (02) :103-119
[6]  
BARUT AO, 1972, DYNAMICAL GROUPS GEN
[7]  
Chihara TS., 1978, INTRO ORTHOGONAL POL
[8]  
Erdelyi A., 1953, HIGHER TRANSCENDENTA, VII
[9]  
HAYDOCK R, 1990, ORTHOGONAL POLYNOMIA
[10]  
HAYDOCK R, 1980, SOLID STATE PHYS, V35, P215