A SEGAL-LANGEVIN TYPE STOCHASTIC DIFFERENTIAL-EQUATION ON A SPACE OF GENERALIZED FUNCTIONALS

被引:3
作者
KALLIANPUR, G
MITOMA, I
机构
[1] UNIV N CAROLINA,DEPT STAT,CHAPEL HILL,NC 27599
[2] SAGA UNIV,DEPT MATH,SAGA 840,JAPAN
来源
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES | 1992年 / 44卷 / 03期
关键词
WEAK SOLUTION; SDE; FRECHET DERIVATIVE; GENERALIZED FUNCTIONAL SPACE; CENTRAL LIMIT THEOREM; SYSTEM OF NEURONS;
D O I
10.4153/CJM-1992-034-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let E' be the dual of a nuclear Frechet space E and L* (t) the adjoint operator of a diffusion operator L(t) of infinitely many variables, which has a formal expression: [GRAPHICS]. A weak form of the stochastic differential equation dX(t) = dW(t) + L* (t)X(t) dt is introduced and the existence of a unique solution is established. The solution process is a random linear functional (in the sense of I. E. Segal) on a space of generalized functionals on E'. The above is an appropriate model for the central limit theorem for an interacting system of spatially extended neurons. Applications to the latter problem are discussed.
引用
收藏
页码:524 / 552
页数:29
相关论文
共 29 条
[1]  
Billingsley P, 1968, CONVERGENCE PROBABIL
[2]   LANGEVIN-EQUATIONS FOR L'-VALUED GAUSSIAN-PROCESSES AND FLUCTUATION LIMITS OF INFINITE PARTICLE-SYSTEMS [J].
BOJDECKI, T ;
GOROSTIZA, LG .
PROBABILITY THEORY AND RELATED FIELDS, 1986, 73 (02) :227-244
[3]  
COURANT R, 1966, METHODS MATH PHYSICS, V1
[5]   CENTRAL LIMIT-THEOREM FOR AN INFINITE LATTICE SYSTEM OF INTERACTING DIFFUSION-PROCESSES [J].
DEUSCHEL, JD .
ANNALS OF PROBABILITY, 1988, 16 (02) :700-716
[6]  
FOUQUE JP, 1984, ANN I H POINCARE-PR, V20, P225
[7]  
GELFAND IM, 1964, GENERALIZED FUNCTION, V2
[8]  
Gihman I.I., 1972, STOCHASTIC DIFFERENT
[9]  
HITSUDA M, 1986, J MULTIVARIATE ANAL, P311
[10]   CENTRAL LIMIT PHENOMENA OF VARIOUS INTERACTING SYSTEMS [J].
HOLLEY, R ;
STROOCK, DW .
ANNALS OF MATHEMATICS, 1979, 110 (02) :333-393