ON THE ALMOST EVERYWHERE CONVERGENCE OF ERGODIC AVERAGES FOR POWER-BOUNDED OPERATORS ON LP-SUBSPACES

被引:22
作者
BERKSON, E
BOURGAIN, J
GILLESPIE, TA
机构
[1] UNIV ILLINOIS,DEPT MATH,URBANA,IL 61801
[2] INST HAUTES ETUD SCI,F-91440 BURES SUR YVETTE,FRANCE
[3] UNIV EDINBURGH,DEPT MATH,EDINBURGH EH9 3JZ,MIDLOTHIAN,SCOTLAND
关键词
D O I
10.1007/BF01200555
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let X be a closed subspace of L(p)(mu), where mu is an arbitrary measure and 1 < p < infinity. For an invertible power-bounded linear operator U: X --> X and n = 1,2,..., let A(n) and H(n) denote the discrete ergodic averages and Hilbert transform truncates defined by U. We extend to this setting the mu-a.e. convergence criteria for A(n) and H(n) which V.F. Gaposhkin and R. Jajte introduced for unitary operators on L2(mu). Our methods lift the setting from X to l(p), where classical harmonic analysis and interpolation can be applied to suitable square functions.
引用
收藏
页码:678 / 715
页数:38
相关论文
共 13 条
[1]  
ASMAR N, IN PRESS INTEGRAL EQ
[2]  
ASMAR N, IN PRESS AM J MATH
[3]   ON THE CONVERGENCE OF ORDERED SETS OF PROJECTIONS [J].
BARRY, JY .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1954, 5 (02) :313-314
[4]   STECKINS THEOREM, TRANSFERENCE, AND SPECTRAL DECOMPOSITIONS [J].
BERKSON, E ;
GILLESPIE, TA .
JOURNAL OF FUNCTIONAL ANALYSIS, 1987, 70 (01) :140-170
[5]  
BOURGAIN J, 1986, PURE APPL MATH, V98, P1
[6]  
Coifman R., 1977, REGIONAL C SERIES MA, V31
[7]  
COIFMAN RR, 1973, STUD MATH, V47, P285
[8]  
Edwards R. E., 1977, ERGEBNISSE MATH IHRE, V90
[10]   ON THE EXISTENCE OF THE ERGODIC HILBERT TRANSFORM [J].
JAJTE, R .
ANNALS OF PROBABILITY, 1987, 15 (02) :831-835