TRANSFINITE DUALS OF QUASI-REFLEXIVE BANACH-SPACES

被引:12
作者
BELLENOT, SF [1 ]
机构
[1] CLARKSON COLL TECHNOL,DEPT MATH & COMP SCI,POTSDAM,NY 13676
关键词
D O I
10.2307/1999928
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:551 / 577
页数:27
相关论文
共 14 条
[1]   UNIFORM CONVEXITY IN LORENTZ SEQUENCE SPACES [J].
ALTSHULER, Z .
ISRAEL JOURNAL OF MATHEMATICS, 1975, 20 (3-4) :260-274
[2]   UNIFORMLY COMPLEMENTED LPNS IN QUASI-REFLEXIVE BANACH-SPACES [J].
BELLENOT, SF .
ISRAEL JOURNAL OF MATHEMATICS, 1981, 39 (03) :234-246
[3]   EQUAL SIGNS ADDITIVE SEQUENCES IN BANACH-SPACES [J].
BRUNEL, A ;
SUCHESTON, L .
JOURNAL OF FUNCTIONAL ANALYSIS, 1976, 21 (03) :286-304
[4]  
CASAZZA PG, 1975, CAN J MATH, V27, P1263
[5]   LN1 PROBLEM AND DEGREES OF NON-REFLEXIVITY .2. [J].
DAVIS, WJ ;
LINDENSTRAUSS, J .
STUDIA MATHEMATICA, 1976, 58 (02) :179-196
[6]   BANACH-SPACES QUASI-REFLEXIVE OF ORDER ONE [J].
JAMES, RC .
STUDIA MATHEMATICA, 1977, 60 (02) :157-177
[7]   NON-REFLEXIVE SPACES OF TYPE-2 [J].
JAMES, RC .
ISRAEL JOURNAL OF MATHEMATICS, 1978, 30 (1-2) :1-13
[8]   NONREFLEXIVE BANACH-SPACE THAT IS UNIFORMLY NONOCTAHEDRAL [J].
JAMES, RC .
ISRAEL JOURNAL OF MATHEMATICS, 1974, 18 (02) :145-155
[9]  
JAMES RC, 1960, PAC J MATH, V10, P563
[10]  
LIN BL, GENERALIZED JAMES QU