BOUNDS FOR THE NUMBER OF NODES IN CHEBYSHEV TYPE QUADRATURE-FORMULAS

被引:18
作者
RABAU, P [1 ]
BAJNOK, B [1 ]
机构
[1] UNIV HOUSTON DOWNTOWN, DEPT APPL MATH, HOUSTON, TX 77002 USA
基金
美国国家科学基金会;
关键词
D O I
10.1016/0021-9045(91)90018-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider Chebyshev type quadrature formulas on an interval, i.e., quadrature formulas where all nodes are weighted equally. Using a topological method, we give an upper bound for the minimum number of nodes needed in order to achieve a certain degree of precision. We also consider the corresponding problem on the d-dimensional sphere Sd. © 1991.
引用
收藏
页码:199 / 214
页数:16
相关论文
共 11 条
[1]  
BAJNOK B, CONSTRUCTION SPHERIC
[2]  
Bernstein S, 1937, CR ACAD SCI URSS, V14, P323
[3]  
Boas RP., 1969, MATH MAG, V42, P165, DOI [10.1080/0025570X.1969.11975954, DOI 10.1080/0025570X.1969.11975954]
[4]  
COSTABILE F, 1974, CALCOLO, V11, P191
[5]   A GENERALIZED MEAN-VALUE THEOREM [J].
DEREYNA, JA .
MONATSHEFTE FUR MATHEMATIK, 1988, 106 (02) :95-97
[6]  
GAUTSCHI W, 1976, LECTURE NOTES MATH, V506
[7]   A VARIATION OF TCHEBICHEFF QUADRATURE PROBLEM [J].
MEIR, A ;
SHARMA, A .
ILLINOIS JOURNAL OF MATHEMATICS, 1967, 11 (04) :535-&
[8]  
Seidel, 1997, GEOMETRIAE DEDICATA, V67, P363, DOI DOI 10.1007/BF03187604
[9]  
Sierpinski W., 1987, ELEMENTARY THEORY NU
[10]  
Stroud AH., 1971, APPROXIMATE CALCULAT