BOUNDS FOR THE NUMBER OF NODES IN CHEBYSHEV TYPE QUADRATURE-FORMULAS

被引:18
作者
RABAU, P [1 ]
BAJNOK, B [1 ]
机构
[1] UNIV HOUSTON DOWNTOWN, DEPT APPL MATH, HOUSTON, TX 77002 USA
基金
美国国家科学基金会;
关键词
D O I
10.1016/0021-9045(91)90018-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider Chebyshev type quadrature formulas on an interval, i.e., quadrature formulas where all nodes are weighted equally. Using a topological method, we give an upper bound for the minimum number of nodes needed in order to achieve a certain degree of precision. We also consider the corresponding problem on the d-dimensional sphere Sd. © 1991.
引用
收藏
页码:199 / 214
页数:16
相关论文
共 11 条
  • [1] BAJNOK B, CONSTRUCTION SPHERIC
  • [2] Bernstein S, 1937, CR ACAD SCI URSS, V14, P323
  • [3] Boas RP., 1969, MATH MAG, V42, P165, DOI [10.1080/0025570X.1969.11975954, DOI 10.1080/0025570X.1969.11975954]
  • [4] COSTABILE F, 1974, CALCOLO, V11, P191
  • [5] A GENERALIZED MEAN-VALUE THEOREM
    DEREYNA, JA
    [J]. MONATSHEFTE FUR MATHEMATIK, 1988, 106 (02): : 95 - 97
  • [6] GAUTSCHI W, 1976, LECTURE NOTES MATH, V506
  • [7] A VARIATION OF TCHEBICHEFF QUADRATURE PROBLEM
    MEIR, A
    SHARMA, A
    [J]. ILLINOIS JOURNAL OF MATHEMATICS, 1967, 11 (04) : 535 - &
  • [8] Seidel, 1997, GEOMETRIAE DEDICATA, V67, P363, DOI DOI 10.1007/BF03187604
  • [9] Sierpinski W., 1987, ELEMENTARY THEORY NU
  • [10] Stroud AH., 1971, APPROXIMATE CALCULAT