A new class of orthogonal Latin hypercubes

被引:0
|
作者
Nam-Ky Nguyen [1 ]
机构
[1] Vietnam Natl Univ, Int Sch, Bldg C, Hanoi, Vietnam
来源
STATISTICS AND APPLICATIONS | 2008年 / 6卷 / 1-2期
关键词
Computer experiments; Latin squares;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we develop a new class of orthogonal Latin hypercubes (OLHs) based on Latin squares. These OLHs have n = 2(r+1) + 1 rows and k = 2(r) columns (r = 1, 2, . . .). For a given number of runs, our OLH vastly increases the numbers of orthogonal columns of OLHs in Ye (1998) and Cioppa & Lucas (2007).
引用
收藏
页码:119 / 123
页数:5
相关论文
共 50 条
  • [31] A Method to Extend Orthogonal Latin Square Codes
    Reviriego, Pedro
    Pontarelli, Salvatore
    Sanchez-Macian, Alfonso
    Antonio Maestro, Juan
    IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, 2014, 22 (07) : 1635 - 1639
  • [32] On Construction of Sliced Orthogonal Latin Hypercube Designs
    Kumar, A. Anil
    Mandal, Baidya Nath
    Parsad, Rajender
    Dash, Sukanta
    Kumar, Mukesh
    JOURNAL OF STATISTICAL THEORY AND PRACTICE, 2024, 18 (04)
  • [33] CONSTRUCTION OF NESTED ORTHOGONAL LATIN HYPERCUBE DESIGNS
    Yang, Jinyu
    Liu, Min-Qian
    Lin, Dennis K. J.
    STATISTICA SINICA, 2014, 24 (01) : 211 - 219
  • [34] The Existence of a Class of Mixed Orthogonal Arrays
    Pang, Shanqi
    Wang, Yajuan
    Chen, Guangzhou
    Du, Jiao
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2016, E99A (04): : 863 - 868
  • [35] Four Mutually Orthogonal Latin Squares of Order 14
    Todorov, D. T.
    JOURNAL OF COMBINATORIAL DESIGNS, 2012, 20 (08) : 363 - 367
  • [36] A polynomial embedding of pairs of orthogonal partial Latin squares
    Donovan, Diane M.
    Yazici, Emine Sule
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2014, 126 : 24 - 34
  • [37] Sliced Latin hypercube designs via orthogonal arrays
    Yin, Yuhui
    Lin, Dennis K. J.
    Liu, Min-Qian
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2014, 149 : 162 - 171
  • [38] A linear algebraic approach to orthogonal arrays and Latin squares
    Khanban, A. A.
    Mahdian, M.
    Mahmoodian, E. S.
    ARS COMBINATORIA, 2012, 105 : 3 - 13
  • [39] Construction of (nearly) orthogonal sliced Latin hypercube designs
    Wang, Xiao-Lei
    Zhao, Yu-Na
    Yang, Jian-Feng
    Liu, Min-Qian
    STATISTICS & PROBABILITY LETTERS, 2017, 125 : 174 - 180
  • [40] Construction of sliced (nearly) orthogonal Latin hypercube designs
    Huang, Hengzhen
    Yang, Jian-Feng
    Liu, Min-Qian
    JOURNAL OF COMPLEXITY, 2014, 30 (03) : 355 - 365