THE SHAPLEY VALUE FOR PARTITION FUNCTION FORM GAMES

被引:34
作者
Do, Kim Hang Pham [1 ]
Norde, Henk [2 ,3 ]
机构
[1] Massey Univ, Dept Appl & Int Econ, Palmerston North, New Zealand
[2] Tilburg Univ, Dept Econometr & Operat Res, POB 90513, NL-5000 LE Tilburg, Netherlands
[3] Tilburg Univ, CentER, NL-5000 LE Tilburg, Netherlands
关键词
Partition function form game; Shapley value;
D O I
10.1142/S021919890700145X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Different axiomatizations of the Shapley value for TU games can be found in the literature. The Shapley value has been generalized in several ways to the class of games in partition function form. In this paper we discuss another generalization of the Shapley value and provide a characterization.
引用
收藏
页码:353 / 360
页数:8
相关论文
共 50 条
[41]   The Shapley value for games on matroids:: The dynamic model [J].
Bilbao, JM ;
Driessen, TSH ;
Jiménez-Losada, A ;
Lebrón, E .
MATHEMATICAL METHODS OF OPERATIONS RESEARCH, 2002, 56 (02) :287-301
[42]   Axiomatizations of the Shapley value for cooperative games on antimatroids [J].
Algaba, E ;
Bilbao, JM ;
van den Brink, R ;
Jiménez-Losada, A .
MATHEMATICAL METHODS OF OPERATIONS RESEARCH, 2003, 57 (01) :49-65
[43]   On the Core and Shapley Value for Regular Polynomial Games [J].
V. A. Vasil’ev .
Siberian Mathematical Journal, 2022, 63 :65-78
[44]   Axiomatizations of the Shapley value for games on augmenting systems [J].
Bilbao, J. M. ;
Ordonez, M. .
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2009, 196 (03) :1008-1014
[45]   Shapley Value for Cooperative Games with Fuzzy Coalition [J].
于晓辉 ;
张强 .
JournalofBeijingInstituteofTechnology, 2008, (02) :249-252
[46]   Two extensions of the Shapley value for cooperative games [J].
T. S. H. Driessen ;
D. Paulusma .
Mathematical Methods of Operations Research, 2001, 53 :35-49
[47]   A new Shapley value for games with fuzzy coalitions [J].
Basallote, M. ;
Hernandez-Mancera, C. ;
Jimenez-Losada, A. .
FUZZY SETS AND SYSTEMS, 2020, 383 :51-67
[48]   The Stochastic Shapley Value for coalitional games with externalities [J].
Skibski, Oskar ;
Michalak, Tomasz R. ;
Wooldridge, Michael .
GAMES AND ECONOMIC BEHAVIOR, 2018, 108 :65-80
[49]   Clique games: A family of games with coincidence between the nucleolus and the Shapley value [J].
Trudeau, Christian ;
Vidal-Puga, Juan .
MATHEMATICAL SOCIAL SCIENCES, 2020, 103 :8-14
[50]   A Shapley function on a class of cooperative fuzzy games [J].
Tsurumi, M ;
Tanino, T ;
Inuiguchi, M .
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2001, 129 (03) :596-618