THE SHAPLEY VALUE FOR PARTITION FUNCTION FORM GAMES

被引:34
|
作者
Do, Kim Hang Pham [1 ]
Norde, Henk [2 ,3 ]
机构
[1] Massey Univ, Dept Appl & Int Econ, Palmerston North, New Zealand
[2] Tilburg Univ, Dept Econometr & Operat Res, POB 90513, NL-5000 LE Tilburg, Netherlands
[3] Tilburg Univ, CentER, NL-5000 LE Tilburg, Netherlands
关键词
Partition function form game; Shapley value;
D O I
10.1142/S021919890700145X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Different axiomatizations of the Shapley value for TU games can be found in the literature. The Shapley value has been generalized in several ways to the class of games in partition function form. In this paper we discuss another generalization of the Shapley value and provide a characterization.
引用
收藏
页码:353 / 360
页数:8
相关论文
共 50 条
  • [1] Shapley Value in Partition Function Form Games: New Research Perspectives for Features Selection
    Bimonte, Giovanna
    Senatore, Luigi
    MATHEMATICAL AND STATISTICAL METHODS FOR ACTUARIAL SCIENCES AND FINANCE, MAF 2022, 2022, : 103 - 108
  • [2] THE CONSENSUS VALUE FOR GAMES IN PARTITION FUNCTION FORM
    Ju, Yuan
    INTERNATIONAL GAME THEORY REVIEW, 2007, 9 (03) : 437 - 452
  • [3] An axiomatic characterization of a value for games in partition function form
    Hu, Cheng-Cheng
    Yang, Yi-You
    SERIES-JOURNAL OF THE SPANISH ECONOMIC ASSOCIATION, 2010, 1 (04): : 475 - 487
  • [4] A coalition formation value for games in partition function form
    Grabisch, Michel
    Funaki, Yukihiko
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2012, 221 (01) : 175 - 185
  • [5] AN AXIOM SYSTEM FOR A VALUE FOR GAMES IN PARTITION FUNCTION FORM
    Albizuri, M. J.
    Arin, J.
    Rubio, J.
    INTERNATIONAL GAME THEORY REVIEW, 2005, 7 (01) : 63 - 72
  • [6] An axiomatic characterization of a value for games in partition function form
    Cheng-Cheng Hu
    Yi-You Yang
    SERIEs, 2010, 1 : 475 - 487
  • [7] A matrix approach to associated consistency of the Shapley value for games in generalized characteristic function form
    Feng, Yuan
    Driessen, Theo S. H.
    Still, Georg
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2013, 438 (11) : 4279 - 4295
  • [8] Convexity and the Shapley value of Bertrand oligopoly TU-games in β-characteristic function form
    Hou, Dongshuang
    Lardon, Aymeric
    Driessen, Theo
    THEORY AND DECISION, 2025,
  • [9] A Graphical Representation for Games in Partition Function Form
    Skibski, Oskar
    Michalak, Tomasz P.
    Sakurai, Yuko
    Wooldridge, Michael
    Yokoo, Makoto
    PROCEEDINGS OF THE TWENTY-NINTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2015, : 1036 - 1042
  • [10] Marginality and convexity in partition function form games
    Alonso-Meijide, J. M.
    Alvarez-Mozos, M.
    Fiestras-Janeiro, M. G.
    Jimenez-Losada, A.
    MATHEMATICAL METHODS OF OPERATIONS RESEARCH, 2021, 94 (01) : 99 - 121