ON HERMITE-HERMITE MATRIX POLYNOMIALS

被引:0
作者
Metwally, M. S.
Mohamed, M. T.
Shehata, A.
机构
来源
MATHEMATICA BOHEMICA | 2008年 / 133卷 / 04期
关键词
matrix functions; Hermite matrix polynomials; recurrence relation; Hermite matrix differential equation; Rodrigues's formula;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper the definition of Hermite-Hermite matrix polynomials is introduced starting from the Hermite matrix polynomials. An explicit representation, a matrix recurrence relation for the Hermite-Hermite matrix polynomials are given and differential equations satisfied by them is presented. A new expansion of the matrix exponential for a wide class of matrices in terms of Hermite-Hermite matrix polynomials is proposed.
引用
收藏
页码:421 / 434
页数:14
相关论文
共 12 条
[1]   A new extension of Hermite matrix polynomials and its applications [J].
Batahan, Raed S. .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2006, 419 (01) :82-92
[2]  
Company R., 1996, J APPROX THEORY APPL, V12, P20
[3]   Bounding Hermite matrix polynomials [J].
Defez, E ;
Hervás, A ;
Jódar, L .
MATHEMATICAL AND COMPUTER MODELLING, 2004, 40 (1-2) :117-125
[4]   Some applications of the Hermite matrix polynomials series expansions [J].
Defez, E ;
Jodar, L .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1998, 99 (1-2) :105-117
[5]   A connection between Lagurre's and Hermite's matrix polynomials [J].
Jodar, L ;
Defez, E .
APPLIED MATHEMATICS LETTERS, 1998, 11 (01) :13-17
[6]  
Jodar L., 1996, P INT WORKSH ORTH PO, P93
[7]  
Jodar L., 1998, APPROX THEORY APPL, V14, P36
[8]  
Lebedev NN, 1972, SPECIAL FUNCTIONS TH
[9]  
Rainville E. D., 1962, SPECIAL FUNCTIONS
[10]  
Sayyed K. A. M., 2003, ELECTRON J LINEAR AL, V10, P272