Evolution in the surface modification of textiles: a review

被引:52
作者
Nadi, Ayoub [1 ,2 ]
Boukhriss, Aicha [2 ]
Bentis, Aziz [1 ,2 ]
Jabrane, Ezzoubeir [3 ]
Gmouh, Said [1 ]
机构
[1] Univ Hassan II Casablanca, Lab LIMAT, Casablanca, Morocco
[2] ESITH, Lab REMTEX, Casablanca, Morocco
[3] Exchange Lab, Casablanca, Morocco
关键词
Textile surface modification; technical textiles; smart textiles; polymerization; nanotechnology; plasma treatment; electrospinning; microencapsulation; sol gel techniques; functionalization;
D O I
10.1080/00405167.2018.1533659
中图分类号
TB3 [工程材料学]; TS1 [纺织工业、染整工业];
学科分类号
0805 ; 080502 ; 0821 ;
摘要
The development of technical textiles allows the introduction of new, interesting and original multi-functionalities in textiles through development of the architecture of fibres, yarns and fabrics, their morphology and surface functionalization without altering their physico-chemical proprieties. This issue of Textile Progress reports different techniques used to impart new functionalities to the surfaces of textiles during the last decade. Following a short, context-setting historical introduction, the preparatory processes which need to be applied to textile matrices to make them clean and ready for functionalization are examined prior to a comprehensive review of techniques and research related to the development of functional textiles ranging from the more-traditional techniques through to more-recent developments. The challenge now is to bring new performance features to bear whilst maintaining environmental sustainability, chemical toxicological acceptability, high performance and cost effectiveness. In this context, the review reports on developments in the use of polymerization, nanotechnologies, plasma treatment, electrospinning, microencapsulation and sol gel techniques to impart novel properties to a textile surface such as water-repellent, flame-retardant and antibacterial properties.
引用
收藏
页码:67 / 108
页数:42
相关论文
共 230 条
[1]   Antibacterial cotton fabrics treated with core-shell nanoparticles [J].
Abdel-Mohsen, A. M. ;
Abdel-Rahman, Rasha M. ;
Hrdina, R. ;
Imramovsky, Ales ;
Burgert, Ladislav ;
Aly, A. S. .
INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2012, 50 (05) :1245-1253
[2]   Dyeing of gamma irradiated cotton using Direct Yellow 12 and Direct Yellow 27: improvement in colour strength and fastness properties [J].
Adeel, Shahid ;
Usman, Muhammad ;
Haider, Watiar ;
Saeed, Muhammad ;
Muneer, Majid ;
Ali, Majid .
CELLULOSE, 2015, 22 (03) :2095-2105
[3]  
Aiqin H., 2010, CARBOHYD POLYM, V79, P578
[4]  
Akovali G., 2012, ADV POLYM COATED TEX
[5]  
Aldebert P., 2008, 1037 RCF, P1
[6]   Sol-gel treatments for enhancing flame retardancy and thermal stability of cotton fabrics: optimisation of the process and evaluation of the durability [J].
Alongi, Jenny ;
Ciobanu, Mihaela ;
Malucelli, Giulio .
CELLULOSE, 2011, 18 (01) :167-177
[7]  
Anandjiwala R. D., 2004, TEXTILE SIZING
[8]   Free radical generation upon plasma treatment of cotton fibers and their initiation efficiency in surface-graft polymerization [J].
Andreozzi, L ;
Castelvetro, V ;
Ciardelli, G ;
Corsi, L ;
Faetti, M ;
Fatarella, E ;
Zulli, F .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2005, 289 (02) :455-465
[9]  
[Anonymous], 2013, CARBOHYD POLYM, V97, P138
[10]   Definition of the hydrogen bond (IUPAC Recommendations 2011) [J].
Arunan, Elangannan ;
Desiraju, Gautam R. ;
Klein, Roger A. ;
Sadlej, Joanna ;
Scheiner, Steve ;
Alkorta, Ibon ;
Clary, David C. ;
Crabtree, Robert H. ;
Dannenberg, Joseph J. ;
Hobza, Pavel ;
Kjaergaard, Henrik G. ;
Legon, Anthony C. ;
Mennucci, Benedetta ;
Nesbitt, David J. .
PURE AND APPLIED CHEMISTRY, 2011, 83 (08) :1637-1641