ANALYSIS OF ASYMPTOTICALLY EQUIVALENT BINARY SUBDIVISION SCHEMES

被引:107
作者
DYN, N
LEVIN, D
机构
[1] School of Mathematical Sciences, Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Ramat-Aviv
关键词
D O I
10.1006/jmaa.1995.1256
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Non-stationary uniform subdivision schemes are presented, including some important examples, as the up-function and exponential splines. The multivariate analysis of subdivision schemes is extended to a class of non-stationary schemes which are asymptotically equivalent to converging stationary or non-stationary schemes. (C) 1995 Academic Press,Inc.
引用
收藏
页码:594 / 621
页数:28
相关论文
共 19 条
[1]  
BUHMANN MD, 1992, 1992IVA4 DAMPT REP
[2]  
CAVARETTA AS, 1991, MEM AM MATH SOC, V93
[3]  
DAUBECHIES I, 1991, SIAM J MATH ANAL, V22, P1338
[4]   ON THE CONSTRUCTION OF MULTIVARIATE (PRE)WAVELETS [J].
DEBOOR, C ;
DEVORE, RA ;
RON, A .
CONSTRUCTIVE APPROXIMATION, 1993, 9 (2-3) :123-166
[5]  
DEBOOR C, 1992, CMSTSR9209 U WISC MA
[6]  
DERFEL G, 1995, J APPROX THEORY, V30, P272
[7]   SYMMETRIC ITERATIVE INTERPOLATION PROCESSES [J].
DESLAURIERS, G ;
DUBUC, S .
CONSTRUCTIVE APPROXIMATION, 1989, 5 (01) :49-68
[8]   ANALYSIS OF UNIFORM BINARY SUBDIVISION SCHEMES FOR CURVE DESIGN [J].
DYN, N ;
GREGORY, JA ;
LEVIN, D .
CONSTRUCTIVE APPROXIMATION, 1991, 7 (02) :127-147
[9]  
Dyn N., 1987, Computer-Aided Geometric Design, V4, P257, DOI 10.1016/0167-8396(87)90001-X
[10]  
DYN N, 1990, MULTIVARIATE APPROXI, P91