Calculation of the characteristic polynomial of a matrix

被引:4
作者
Pereslavtseva, O. N.
机构
基金
俄罗斯基础研究基金会;
关键词
D O I
10.1515/DMA.2011.008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider efficient algorithms of calculation of the characteristic polynomials of matrices over commutative rings. We give estimates of complexity treated as the number of ring operations, and for the ring of integers the estimates are presented in terms of the number of multiplication operations over the machine words. We suggest a new algorithm to calculate the characteristic polynomial which has the best estimate of complexity in the ring operations. We give recommendations concerning applications of the algorithm of calculation of the characteristic polynomials depending on the size of the matrix, in particular, the algorithm suggested in this paper is recommended to be applied to integer-element matrices of size greater than 60.
引用
收藏
页码:109 / 129
页数:21
相关论文
共 12 条
[1]   ON COMPUTING THE DETERMINANT IN SMALL PARALLEL TIME USING A SMALL NUMBER OF PROCESSORS [J].
BERKOWITZ, SJ .
INFORMATION PROCESSING LETTERS, 1984, 18 (03) :147-150
[2]  
Chistov A. L., 1985, LECT NOTES COMPUTER, V199, P147
[3]  
Dumas J.-G., 2005, P ISSAC 05, P140
[4]  
FADDEEV DK, 1963, COMPUTATIONAL METHOD
[5]  
Knuth D. E., 1969, ART COMPUTING PROGRA
[6]  
Le Verrier U., 1840, J MATH PURE APPL, V1, P220
[7]  
Malashonok G. I., 2002, MATRIX METHODS CALCU
[8]   Computation of the characteristic polynomial of an endomorphism of a free module [J].
Malashonok G.I. .
Journal of Mathematical Sciences, 2002, 108 (6) :966-976
[9]  
Pereslavtseva O. N., 2006, P INT SCI C MOD MATH, P130
[10]  
Pereslavtseva O. N., 2007, TAMBOV U REPORTS, V13, P131