Agent-Based Modeling in Systems Pharmacology

被引:44
作者
Cosgrove, J. [1 ,2 ,3 ]
Butler, J. [1 ,2 ,3 ]
Alden, K. [1 ,2 ]
Read, M. [4 ]
Kumar, V. [5 ]
Cucurull-Sanchez, L. [6 ]
Timmis, J. [1 ,3 ,7 ]
Coles, M. [1 ,2 ,7 ]
机构
[1] Univ York, York Computat Immunol Lab, York, N Yorkshire, England
[2] Univ York, Ctr Immunol & Infect, York, N Yorkshire, England
[3] Univ York, Dept Elect, York, N Yorkshire, England
[4] Univ Sydney, Charles Perkins Ctr, Sydney, NSW, Australia
[5] Univ Calif, Sch Med, La Jolla, CA USA
[6] GSK Med Res Ctr, Stevenage, Herts, England
[7] SimOmics, York, N Yorkshire, England
基金
英国医学研究理事会; 美国国家卫生研究院; 英国惠康基金; 英国工程与自然科学研究理事会; 英国国家替代、减少和改良动物研究中心;
关键词
D O I
10.1002/psp4.12018
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Modeling and simulation (M&S) techniques provide a platform for knowledge integration and hypothesis testing to gain insights into biological systems that would not be possible a priori. Agent-based modeling (ABM) is an M&S technique that focuses on describing individual components rather than homogenous populations. This tutorial introduces ABM to systems pharmacologists, using relevant case studies to highlight how ABM-specific strengths have yielded success in the area of preclinical mechanistic modeling.
引用
收藏
页码:615 / 629
页数:15
相关论文
共 70 条
[1]   Using argument notation to engineer biological simulations with increased confidence [J].
Alden, Kieran ;
Andrews, Paul S. ;
Polack, Fiona A. C. ;
Veiga-Fernandes, Henrique ;
Coles, Mark C. ;
Timmis, Jon .
JOURNAL OF THE ROYAL SOCIETY INTERFACE, 2015, 12 (104)
[2]   Spartan: A Comprehensive Tool for Understanding Uncertainty in Simulations of Biological Systems [J].
Alden, Kieran ;
Read, Mark ;
Timmis, Jon ;
Andrews, Paul S. ;
Veiga-Fernandes, Henrique ;
Coles, Mark .
PLOS COMPUTATIONAL BIOLOGY, 2013, 9 (02)
[3]   Pairing experimentation and computational modeling to understand the role of tissue inducer cells in the development of lymphoic organs [J].
Alden, Kieran ;
Timmis, Jon ;
Andrews, Paul S. ;
Veiga-Fernandes, Henrique ;
Coles, Mark C. .
FRONTIERS IN IMMUNOLOGY, 2012, 3
[4]   Impact of Modeling and Simulation: Myth or Fact? [J].
Allerheiligen, S. R. B. .
CLINICAL PHARMACOLOGY & THERAPEUTICS, 2014, 96 (04) :413-415
[5]   Next-Generation Model-Based Drug Discovery and Development: Quantitative and Systems Pharmacology [J].
Allerheiligen, S. R. B. .
CLINICAL PHARMACOLOGY & THERAPEUTICS, 2010, 88 (01) :135-137
[6]   In silico experiments of existing and hypothetical cytokine-diyected clinical trials using agent-based modeling [J].
An, G .
CRITICAL CARE MEDICINE, 2004, 32 (10) :2050-2060
[7]   Agent-based models in translational systems biology [J].
An, Gary ;
Mi, Qi ;
Dutta-Moscato, Joyeeta ;
Vodovotz, Yoram .
WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE, 2009, 1 (02) :159-171
[8]   Translational systems biology using an agent-based approach for dynamic knowledge representation: An evolutionary paradigm for biomedical research [J].
An, Gary C. .
WOUND REPAIR AND REGENERATION, 2010, 18 (01) :8-12
[9]  
Andrews P. S., 2010, YCS2010453 U YORK
[10]   The effects of EGF-receptor density on multiscale tumor growth patterns [J].
Athale, CA ;
Deisboeck, TS .
JOURNAL OF THEORETICAL BIOLOGY, 2006, 238 (04) :771-779