FURTHER RESULTS ON APPROXIMATE INERTIAL MANIFOLDS FOR THE FITZHUGH-NAGUMO MODEL

被引:0
|
作者
Nartea, Simona Cristina [1 ]
Georgescu, Adelina [2 ]
机构
[1] Tech Univ Civil Engn Bucharest, Dept Math & Informat, Bd Lacul Tei 124,Sect 2, RO-020396 Bucharest, Romania
[2] Acad Romanian Scientists, Bucharest, Romania
关键词
D O I
10.1478/C1A0902001
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
For two particular choices of the three parameters in the FitzHugh-Nagumo model the equilibrium points are found. The corresponding phase portrait around them is graphically represented allowing us to delimit an absorbing domain. Then the Jolly-Rosa-Temam numerical method is applied in order to study the approximate inertial manifold for the model. To this aim the own numerical code of the first author is used.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] A family of approximate inertial manifolds for a Van der Pol/FitzHugh-Nagumo perturbation problem
    Shomberg, Joseph L.
    Nartea, Cristina
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2011, 88 (07) : 1443 - 1470
  • [2] Hopf bifurcations on invariant manifolds of a modified Fitzhugh-Nagumo model
    Tah, Forwah Amstrong
    Tabi, Conrad Bertrand
    Kofane, Timoleon Crepin
    NONLINEAR DYNAMICS, 2020, 102 (01) : 311 - 327
  • [3] Approximate controllability of the FitzHugh-Nagumo equation in one dimension
    Chowdhury, Shirshendu
    Biswas, Mrinmay
    Dutta, Rajib
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2020, 268 (07) : 3497 - 3563
  • [4] Spike transitions in the FitzHugh-Nagumo model
    Biscari, P.
    Lelli, C.
    EUROPEAN PHYSICAL JOURNAL PLUS, 2011, 126 (02): : 1 - 9
  • [5] Global bifurcations in FitzHugh-Nagumo model
    Georgescu, A
    Rocsoreanu, C
    Giurgiteanu, N
    BIFURCATION, SYMMETRY AND PATTERNS, 2003, : 197 - 202
  • [6] Electronic Model of FitzHugh-Nagumo Neuron
    Petrovas, A.
    Lisauskas, S.
    Slepikas, A.
    ELEKTRONIKA IR ELEKTROTECHNIKA, 2012, 122 (06) : 117 - 120
  • [7] Microscopic model for FitzHugh-Nagumo dynamics
    Malevanets, A
    Kapral, R
    PHYSICAL REVIEW E, 1997, 55 (05): : 5657 - 5670
  • [8] Meromorphic solutions in the FitzHugh-Nagumo model
    Demina, Maria V.
    Kudryashov, Nikolay A.
    APPLIED MATHEMATICS LETTERS, 2018, 82 : 18 - 23
  • [9] Spike transitions in the FitzHugh-Nagumo model
    P. Biscari
    C. Lelli
    The European Physical Journal Plus, 126
  • [10] On a modification of the FitzHugh-Nagumo neuron model
    S. D. Glyzin
    A. Yu. Kolesov
    N. Kh. Rozov
    Computational Mathematics and Mathematical Physics, 2014, 54 : 443 - 461