NEW SEQUENCES FOR ASYNCHRONOUS FREQUENCY-HOPPING MULTIPLEX

被引:1
|
作者
POPOVIC, BM
机构
关键词
D O I
10.1049/el:19860439
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
7
引用
收藏
页码:640 / 642
页数:3
相关论文
共 50 条
  • [31] A Combinatorial Construction for Strictly Optimal Frequency-Hopping Sequences
    Fan, Cuiling
    Cai, Han
    Tang, Xiaohu
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2016, 62 (08) : 4769 - 4774
  • [32] Optimal frequency-hopping sequences based on the decimated m-sequences
    Xu, Shanding
    CRYPTOGRAPHY AND COMMUNICATIONS-DISCRETE-STRUCTURES BOOLEAN FUNCTIONS AND SEQUENCES, 2022, 14 (05): : 983 - 998
  • [33] A new construction of frequency-hopping codes
    Chen, JJ
    Yang, GC
    Yang, CM
    IEEE COMMUNICATIONS LETTERS, 2002, 6 (05) : 181 - 183
  • [34] Optimal frequency-hopping sequences based on the decimated m-sequences
    Shanding Xu
    Cryptography and Communications, 2022, 14 : 983 - 998
  • [35] New Families of Frequency-Hopping Sequences of Period 2(2n-1)
    Han, Yun Kyoung
    Chung, Jin-Ho
    Yang, Kyeongcheol
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2012, E95A (04) : 811 - 817
  • [36] CODE SEQUENCES FOR FREQUENCY-HOPPING MULTIPLE-ACCESS SYSTEMS
    VAJDA, I
    IEEE TRANSACTIONS ON COMMUNICATIONS, 1995, 43 (10) : 2553 - 2554
  • [37] Set of optimal frequency-hopping sequences based on polynomial theory
    Han, H. Y.
    Peng, D. Y.
    ELECTRONICS LETTERS, 2014, 50 (03) : 214 - +
  • [38] Combinatorial characterizations of one-coincidence frequency-hopping sequences
    Zhenfu Cao
    Gennian Ge
    Ying Miao
    Designs, Codes and Cryptography, 2006, 41 : 177 - 184
  • [39] Combinatorial characterizations of one-coincidence frequency-hopping sequences
    Cao, Zhenfu
    Ge, Gennian
    Miao, Ying
    DESIGNS CODES AND CRYPTOGRAPHY, 2006, 41 (02) : 177 - 184
  • [40] Multi-party watermark embedding with frequency-hopping sequences
    Zhou, Limengnan
    Wu, Hanzhou
    CRYPTOGRAPHY AND COMMUNICATIONS-DISCRETE-STRUCTURES BOOLEAN FUNCTIONS AND SEQUENCES, 2022, 14 (02): : 307 - 318