APPLIED THEORIES OF THE PLASTICITY OF POROUS, UNEQUALLY STRONG, AND ANISOTROPIC MEDIA .2. BASIC RESULTS

被引:0
|
作者
MANKOVSKII, VA
机构
关键词
D O I
10.1007/BF00608354
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
引用
收藏
页码:301 / 307
页数:7
相关论文
共 50 条
  • [1] Basic theories for strain localization analysis of porous media with gradient dependent plasticity model
    Zhang Hong-wu
    Qin Jian-min
    Liu Guo-zhen
    ROCK AND SOIL MECHANICS, 2006, 27 (01) : 1 - 6
  • [2] Anisotropic Bounding Surface Plasticity Model for Porous Media
    Ma, Jianjun
    Guan, Junwei
    Gui, Yilin
    Huang, Linchong
    INTERNATIONAL JOURNAL OF GEOMECHANICS, 2021, 21 (04)
  • [3] Comparison of several plasticity theories applied to simulation of plastic deformation of porous materials
    Justino, JG
    Nemes, JA
    Alves, MK
    Klein, AN
    ADVANCED POWDER TECHNOLOGY II, 2001, 189-1 : 592 - 597
  • [4] Comparison of several plasticity theories applied to simulation of plastic deformation of porous materials
    Justino, Júnior Gervásio
    Nemes, James A.
    Alves, Marcelo K.
    Klein, Aloísio Nelmo
    Key Engineering Materials, 2001, 189-191 : 592 - 597
  • [5] ON THE CONCEPT OF RELATIVE AND PLASTIC SPINS AND ITS IMPLICATIONS TO LARGE DEFORMATION THEORIES .2. ANISOTROPIC HARDENING PLASTICITY
    ZBIB, HM
    AIFANTIS, EC
    ACTA MECHANICA, 1988, 75 (1-4) : 35 - 56
  • [6] NUMERICAL RESULTS AND BIOT THEORY IN ANISOTROPIC POROUS FIBROUS MEDIA
    CASTAGNEDE, B
    DEPOLLIER, C
    JOURNAL DE PHYSIQUE IV, 1994, 4 (C5): : 183 - 186
  • [7] OPTICAL PHENOMENA IN ANISOTROPIC MEDIA .2.
    KUZMIN, VL
    OPTIKA I SPEKTROSKOPIYA, 1977, 42 (02): : 373 - 375
  • [8] Basic theories for strain localization analysis of porous media with rate dependent model
    Zhang, HW
    Qin, JM
    CHINESE SCIENCE BULLETIN, 2005, 50 (24): : 2793 - 2799
  • [9] Basic theories for strain localization analysis of porous media with rate dependent model
    ZHANG Hongwu & QIN Jianmin State Key Laboratory of Structural Analysis and Industrial Equipment Dalian University of Technology
    ChineseScienceBulletin, 2005, (24) : 2793 - 2799
  • [10] Chaotic Homogeneous Porous Media. 2. Theory of Dispersion Turbulence: Basic Propositions
    A. P. Mozhaev
    Journal of Engineering Physics and Thermophysics, 2002, 75 (2) : 371 - 383