Stability Of A 2-Dimensional Irreducible Linear System Of Delay Differential Equations

被引:0
作者
Shu, Felix Che [1 ]
机构
[1] Univ Buea, Dept Math, Box 63, Buea, Cameroon
来源
APPLIED MATHEMATICS E-NOTES | 2012年 / 12卷
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let r > 0. We consider the system x(t) = Ax(t) Bx(t - r) where A and B are real square matrices of dimension 2. We assume that A has a single eigenvalue and give sufficient conditions for the asymptotic stability of the null solution of the system by deriving a pair of one dimensional delay differential equations from the system and comparing the Lyapunov exponents of the corresponding fundamental solutions.
引用
收藏
页码:36 / 43
页数:8
相关论文
共 10 条
[1]   Analysis of a system of linear delay differential equations [J].
Asl, FM ;
Ulsoy, AG .
JOURNAL OF DYNAMIC SYSTEMS MEASUREMENT AND CONTROL-TRANSACTIONS OF THE ASME, 2003, 125 (02) :215-223
[2]  
Bellman R., 1963, THEORY FUNCTIONAL DI
[3]  
Hale J., 1977, APPL MATH SCI, V3
[4]  
Hayes N. D., 1950, J LONDON MATH SOC, Vs1-25, P226, DOI DOI 10.1112/JLMS/S1-25.3.226
[5]  
KUCHLER U, 1992, STOCHASTICS STOCHAST, V40, P23, DOI [10.1080/17442509208833780, DOI 10.1080/17442509208833780, DOI 10.1080/17442509208833780)]
[7]  
Pontryagin L. S., 1955, AM MATH SOC TRANSL, V2, P95
[8]  
Ruan SG, 2003, DYNAM CONT DIS SER A, V10, P863
[9]  
Shu FC, 2011, APPL MATH E-NOTES, V11, P261
[10]   STABILITY CRITERIA AND THE REAL ROOTS OF A TRANSCENDENTAL EQUATION [J].
WRIGHT, EM .
JOURNAL OF THE SOCIETY FOR INDUSTRIAL AND APPLIED MATHEMATICS, 1961, 9 (01) :136-148